Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4275))

  • 874 Accesses

Abstract

In this paper, we will present an efficient approach for distributed inference. We use belief propagation’s message-passing algorithm on top of a DHT storing a Bayesian network. Nodes in the DHT run a variant of the spring relaxation algorithm to redistribute the Bayesian network among them. Thereafter correlated data is stored close to each other reducing the message cost for inference. We simulated our approach in Matlab and show the message reduction and the achieved load balance for random, tree-shaped, and scale-free Bayesian networks of different sizes.

As possible application, we envision a distributed software knowledge base maintaining encountered software bugs under users’ system configurations together with possible solutions for other users having similar problems. Users would not only be able to repair their system but also to foresee possible problems if they would install software updates or new applications.

The work presented in this paper was supported (in part) by the National Competence Center in Research on Mobile Information and Communication Systems (NCCR-MICS), a center supported by the Swiss National Science Foundation under grant number 5005-67322 and was (partly) carried out in the framework of the EPFL Center for Global Computing and supported by the Swiss National Funding Agency OFES as part of the European project NEPOMUK No FP6-027705.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11914853_71.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Paskin, M.A., Guestrin, C.E., McFadden, J.: A robust architecture for distributed inference in sensor networks (2005)

    Google Scholar 

  2. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  3. Berrou, C., Glavieux, A., Thitimajshima, P.: Near shannon limit error-correcting codes and decoding: Turbo codes. In: Proceedings of the IEEE International Communications Conference (1993)

    Google Scholar 

  4. Bickson, D., Malkhi, D., Rabinowitz, D.: Efficient large scale content distribution. In: Proceedings of the Workshop on Distributed Data and Structures (WDAS), Lausanne, Switzerland (2004)

    Google Scholar 

  5. Ihler, A.T., Fisher, J.W.I., Moses, R.L., Willsky, A.S.: Nonparametric belief propagation for self-calibration in sensor networks. In: Proceedings of the Third international symposium on Information processing in sensor networks, pp. 225–233. ACM Press, New York (2004)

    Chapter  Google Scholar 

  6. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Generalized belief propagation. In: Advances in Neural Information Processing Systems (NIPS), vol. 13, pp. 689–695. MIT Press, Cambridge (2000)

    Google Scholar 

  7. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network coordinate system. In: Proceedings of ACM SIGCOMM (2004)

    Google Scholar 

  8. Pietzuch, P., Shneidman, J., Welsh, M., Seltzer, M., Roussopoulos, M.: Path optimization in stream-based overlay networks. Technical Report TR26-04, Harvard University, Cambridge, Massachusetts (2004)

    Google Scholar 

  9. Aberer, K.: P-Grid: A Self-Organizing Access Structure for P2P Information Systems. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, pp. 179–194. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Weiss, Y.: Correctness of local probability propagation in graphical models with loops. Neural Computation 12(1), 1–41 (2000)

    Article  MATH  Google Scholar 

  11. Kleinberg, J.: The small-world phenomenon: An algorithmic perspective. In: ACM STOC (2000)

    Google Scholar 

  12. Bickson, D., Dolev, D., Weiss, Y., Aberer, K., Hauswirth, M.: Indexing data-oriented overlay networks using belief propagation. In: Proceedings of the Workshop on Distributed Data and Structures (WDAS), Santa Clara, CA, USA (2006)

    Google Scholar 

  13. Microsoft Corporation: Microsoft help and support (2006), http://support.microsoft.com/

  14. The Mozilla Organization: Mozillazine knowledge base (2006), http://kb.mozillazine.org/

  15. The Mozilla Organization: Bugzilla (2006), http://www.bugzilla.org/

  16. Yamanishi, K.: Distributed cooperative bayesian learning strategies. In: COLT 1997: Proceedings of the tenth annual conference on Computational learning theory, pp. 250–262. ACM Press, New York (1997)

    Chapter  Google Scholar 

  17. Heckerman, D.: A tutorial on learning with bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, Redmond, USA (1995)

    Google Scholar 

  18. Chen, R., Sivakumar, K., Kargupta, H.: Collective mining of bayesian networks from distributed heterogeneous data. Knowledge and Information Systems 6(2), 164–187 (2004)

    Google Scholar 

  19. Batagelj, V.: Pajek - program for large networks analysis and visualization (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, R., Aberer, K. (2006). Efficient Peer-to-Peer Belief Propagation. In: Meersman, R., Tari, Z. (eds) On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE. OTM 2006. Lecture Notes in Computer Science, vol 4275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11914853_31

Download citation

  • DOI: https://doi.org/10.1007/11914853_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48287-1

  • Online ISBN: 978-3-540-48289-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics