Skip to main content

Advanced Recommendation Models for Mobile Tourist Information

  • Conference paper
On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE (OTM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4275))

  • 919 Accesses

Abstract

Personalized recommendations in a mobile tourist information system suffer from a number of limitations. Most pronounced is the amount of initial user information needed to build a user model. In this paper, we adopt and extend the basic concepts of recommendation paradigms by exploiting a user’s personal information (e.g., preferences, travel histories) to replace the missing information. The designed algorithms are embedded as recommendation services in our TIP prototype. We report on the results of our analysis regarding effectiveness and performance of the recommendation algorithms. We show how a number of limiting factors were successfully eliminated by our new recommender strategies.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11914853_71.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amendola, I., Cena, F., Console, L., Crevola, A., Gena, C., Goy, A., Modeo, S., Perrero, M., Torre, I., Toso, A.: UbiquiTO: A multi-device adaptive guide. In: Mobile HCI: Mobile Human-Computer Interaction, Glasgow, UK (September 2004)

    Google Scholar 

  2. Burke, R.: Knowledge-based and collaborative-filtering recommender systems. In: Proceedings of the Workshop on AI and Electronic Commerce. AAAI 1999, Orlando, Florida (1999)

    Google Scholar 

  3. Burke, R., Hammond, K., Yong, B.: The findme approach to assisted browsing. IEEE Expert: Intelligent Systems and Their Applications 12(4), 32–40 (1997)

    Google Scholar 

  4. Chen, H., Chen, A.: A music recommendation system based on music data grouping and user interest. In: Proceedings of the tenth international conference on Information and knowledge management, Atlanta, Georgia, USA (October 2001)

    Google Scholar 

  5. Cheverst, K., Mitchell, K., Davies, N.: The role of adaptive hypermedia in a context-aware tourist guide. Communication of the ACM 45(5), 47–51 (1997)

    Google Scholar 

  6. Hayes, C., Massa, P., Avesani, P., Cunningham, P.: An on-line evaluation framework for recommender systems. In: Workshop on Personalization and Recommendation in E-Commerce, Malaga, Spain (May 2002)

    Google Scholar 

  7. Herlocker, J., Konstan, J., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the SIGIR 1999, Berkley, California, USA. (August 1999)

    Google Scholar 

  8. Herlocker, J., Konstan, J., Terveen, L., Riedl, J.: Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems 22(1), 5–53 (2004)

    Article  Google Scholar 

  9. Hinze, A., Junmanee, S.: Travel recommendations in a mobile tourist information system. In: Proceedings of Information Systems and its Application ISTA 2005, Palmerston North, New Zealand (May 2005)

    Google Scholar 

  10. Hinze, A., Voisard, A.: Location and time-based information delivery in tourism. In: Proceedings of Advances in Spatial and Temporal Databases, 8th International Symposium, Santorini Island, Greece (July 2003)

    Google Scholar 

  11. Junmanee, S., Hinze, A.: Design and implementation of an advanced recommendation component in the tourist information system tip. Technical Report X/2006, University of Waikato, Computer Science Department, Hamilton, New Zealand, (June 2006), based on Master’s Thesis

    Google Scholar 

  12. Klante, P., Krösche, J., Boll, S.: AccesSights – A multimodal location-aware mobile tourist information system. In: Miesenberger, K., Klaus, J., Zagler, W.L., Burger, D. (eds.) ICCHP 2004. LNCS, vol. 3118, pp. 287–294. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Melvile, P., Mooney, R., Nagarajan, R.: Content-boosted filtering for improved recommendations. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI 2002), Edmonton, Canada (July 2002)

    Google Scholar 

  14. Middleton, S.E., Shadbolt, N., Roure, D.D.: Ontological user profiling in recommender systems. ACM Transactions on Information Systems 22(1), 54–88 (2004)

    Article  Google Scholar 

  15. Mooney, R., Roy, L.: Content-based book recommending using learning for text categorization. In: Proceedings of the fifth ACM conference on Digital libraries, San Antonio, Texas, USA (June 2000)

    Google Scholar 

  16. Papagelis, M., Plexousakis, D.: Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents. In: Proc. of the Workshop for Cooperative Information Agents VIII, Erfurt, Germany (September 2004)

    Google Scholar 

  17. Paris, C.: Information delivery for tourism. IEEE Intelligent System 17(6), 61–63 (2002)

    Google Scholar 

  18. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of 10th International World Wide Web Conference, WWW10, Hong Kong (May 2001)

    Google Scholar 

  19. Scottish citylink online bus ticket booking, Available at: http://www.citylink.co.uk/howtobuy.htm (accessed on 19/4/2005)

  20. Simcock, T., Hillenbrand, S., Thomas, B.: Developing a location based tourist guide application. In: Proceedings of the Australasian information security workshop conference CRPTIS 21, ACSW frontiers, Australia (2003)

    Google Scholar 

  21. Sinha, R., Swearingen, K.: The role of transparency in recommender systems. In: Proceedings of Conference on Human Factors in Computing Systems, London, UK, April 2002, pp. 830–831

    Google Scholar 

  22. Vozalis, E., Margaritis, K.: Analysis of recommender system’s algorithm. In: Sixth Hellenic-European Conference on Computer Mathematics and its Applications(HERCMA), Athens, Greece (September 2003)

    Google Scholar 

  23. Zipf, A.: Adaptive context-aware mobility support for tourists. IEEE Intelligent System 17(6), 57–59 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hinze, A., Junmanee, S. (2006). Advanced Recommendation Models for Mobile Tourist Information. In: Meersman, R., Tari, Z. (eds) On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE. OTM 2006. Lecture Notes in Computer Science, vol 4275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11914853_38

Download citation

  • DOI: https://doi.org/10.1007/11914853_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48287-1

  • Online ISBN: 978-3-540-48289-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics