Skip to main content

Semantic Similarity of Ontology Instances Tailored on the Application Context

  • Conference paper
On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE (OTM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4275))

  • 918 Accesses

Abstract

The paper proposes a framework to assess the semantic similarity among instances within an ontology. It aims to define a sensitive measurement of semantic similarity, which takes into account different hints hidden in the ontology definition and explicitly considers the application context. The similarity measurement is computed by combining and extending existing similarity measures and tailoring them according to the criteria induced by the context. Experiments and evaluation of the similarity assessment are provided.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11914853_71.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ehrig, M., Haase, P., Stojanovic, N., Hefke, M.: Similarity for Ontologies - A Comprehensive Framework. In: ECIS 2005, Regensburg, Germany (2005)

    Google Scholar 

  2. Maedche, A., Zacharias, V.: Clustering Ontology-Based Metadata in the Semantic Web. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 348–360. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Rodriguez, M.A., Egenhofer, M.J.: Comparing geospatial entity classes: an asymmetric and context-dependent similarity measure. IJGIS 18(3), 229–256 (2004)

    Google Scholar 

  4. Test Ontology, http://www.ge.imati.cnr.it/ima/personal/albertoni/odbase06p.owl

  5. Rodriguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Trans. Knowl. Data Eng. 15(2), 442–456 (2003)

    Article  Google Scholar 

  6. Hierarchical Clustering Explorer, 3.0, http://www.cs.umd.edu/hcil/multi-cluster/

  7. Euzenat, J., Valtchev, P.: Similarity-Based Ontology Alignment in OWL-Lite. In: ECAI, Valencia, Spain, pp. 333–337. IOS Press, Amsterdam (2004)

    Google Scholar 

  8. Euzenat, J., Le Bach, T., et al.: State of the Art on Ontology Alignment (2004), http://www.starlab.vub.ac.be/research/projects/knowledgeweb/kweb-223.pdf

  9. Schwering, A.: Hybrid Model for Semantic Similarity Measurement. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1449–1465. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Usanavasin, S., Takada, S., Doi, N.: Semantic Web Services Discovery in Multi-ontology Environment. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 59–68. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Hau, J., Lee, W., Darlington, J.: A Semantic Similarity Measure for Semantic Web Services. In: Web Service Semantics:Towards Dynamic Business Integration, workshop at WWW (2005)

    Google Scholar 

  12. Albertoni, R., Bertone, A., De Martino, M.: Semantic Analysis of Categorical Metadata to Search for Geographic Information. In: Proceedings 16th International Workshop on Database and Expert Systems Applications, pp. 453–457. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  13. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)

    Article  Google Scholar 

  14. Li, Y., Bandar, Z., McLean, D.: An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources. IEEE Trans. Knowl. Data Eng. 15, 871–882 (2003)

    Article  Google Scholar 

  15. Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In: Proc. of the Fourteenth Int. Joint Conference on Artificial Intelligence, pp. 448–453 (1995)

    Google Scholar 

  16. Lin, D.: An Information-Theoretic Definition of Similarity. In: Proc. of the Fifteenth Int. Conference on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  17. Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)

    Article  Google Scholar 

  18. Gädenfors, P.: How to make the semantic web more semantic. In: FOIS, pp. 17–34. IOS Press, Amsterdam (2004)

    Google Scholar 

  19. Kashyap, V., Sheth, A.: Semantic and schematic similarities between database objects: a context-based approach. VLDB J 5(4), 276–304 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albertoni, R., De Martino, M. (2006). Semantic Similarity of Ontology Instances Tailored on the Application Context. In: Meersman, R., Tari, Z. (eds) On the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE. OTM 2006. Lecture Notes in Computer Science, vol 4275. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11914853_66

Download citation

  • DOI: https://doi.org/10.1007/11914853_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48287-1

  • Online ISBN: 978-3-540-48289-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics