Skip to main content

Abstract

In the DOGMA ontology engineering approach ontology construction starts from a (possibly very large) uninterpreted base of elementary fact types called lexons that are mined from linguistic descriptions (be it from existing schemas, a text corpus or formulated by domain experts). An ontological commitment to such ”lexon base” means selecting/reusing from it a meaningful set of facts that approximates well the intended conceptualization, followed by the addition of a set of constraints, or rules, to this subset. The commitment process is inspired by the fact-based database modeling method NIAM/ORM2, which features a recently updated, extensive graphical support. However, for encouraging lexon reuse by ontology engineers a more scalable way of visually browsing a large Lexon Base is important. Existing techniques for similar semantic networks rather focus on graphical distance between concepts and not always consider the possibility that concepts might be (fact-) related to a large number of other concepts. In this paper we introduce an alternative approach to browsing large fact-based diagrams in general, which we apply to lexon base browsing and selecting for building ontological commitments in particular. We show that specific characteristics of DOGMA such as grouping by contexts and its ”double articulation principle”, viz. explicit separation between lexons and an application’s commitment to them can increase the scalability of this approach. We illustrate with a real-world case study.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11915072_109.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gomez-Perez, A., Angele, J., Fernandez-Lopez, M., Christophides, V., Stutt, A., Sure, Y.: A survey on ontology tools. In: OntoWeb deliverable 1. OntoWeb deliverable 1.3, Universidad Politecnia de Madrid (2002)

    Google Scholar 

  2. Duineveld, A.J., Stoter, R., Weiden, M.R., Kenepa, B., Benjamins, V.R.: Wondertools?: a comparative study of ontological engineering tools. Int. J. Hum.-Comput. Stud. 52(6), 1111–1133 (2000)

    Article  Google Scholar 

  3. Lambrix, P., Edberg, A.: Evaluation of ontology merging tools in bioinformatics. In: Pacific Symposium on Biocomputing, pp. 589–600 (2003)

    Google Scholar 

  4. Gómez-Pérez, A., Corcho, O., Fernández-López, M.: Ontological Engineering. Springer, New York (2003)

    Google Scholar 

  5. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your first ontology. Technical Report KSL-01-05, Knowledge Systems Laboratory, Stanford University, Stanford, CA, 94305, USA (2001)

    Google Scholar 

  6. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy, N.F., Tu, S.W.: The evolution of protégé: an environment for knowledge-based systems development. Int. J. Hum.-Comput. Stud. 58(1), 89–123 (2003)

    Article  Google Scholar 

  7. Storey, M., Musen, M., Silva, J., Best, C., Ernst, N., Fergerson, R., Noy, N.: Jambalaya: Interactive visualization to enhance ontology authoring and knowledge acquisition in protege (2001)

    Google Scholar 

  8. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)

    MathSciNet  Google Scholar 

  9. Fluit, C., Sabou, M., van Harmelen, F.: Ontology-based information visualization. In: Geroimenko, V. (ed.) Visualizing the Semantic Web, pp. 36–48. Springer, Heidelberg (2002)

    Google Scholar 

  10. Mutton, P., Golbeck, J.: Visualization of semantic metadata and ontologies. In: IV 2003: Proceedings of the Seventh International Conference on Information Visualization, Washington, DC, USA, p. 300. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  11. Gabel, T., Sure, Y., Völker, J.: Kaon – ontology management infrastructure. SEKT informal deliverable 3.1.1.a, Institute AIFB, University of Karlsruhe (2004)

    Google Scholar 

  12. Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., Wenke, D.: OntoEdit: Collaborative ontology development for the Semantic Web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 221–235. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Bosca, A., Bonino, D., P.P.: Ontosphere: more than a 3d ontology visualization tool. In: SWAP 2005, the 2nd Italian Semantic Web Workshop. CEUR Workshop Proceedings, December 14-16 (2005)

    Google Scholar 

  14. De Leenheer, P., de Moor, A.: Context-driven disambiguation in ontology elicitation. In: Shvaiko, P., Euzenat, J. (eds.) Context and Ontologies: Theory, Practice and Applications, Pittsburg USA. AAAI Technical Report, vol. WS-05-01, pp. 17–24. AAAI Press, Menlo Park (2005)

    Google Scholar 

  15. Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus ontology engineering. SIGMOD Record Special Issue on Semantic Web, Database Management and Information Systems 31(4), 12–17 (2002)

    Google Scholar 

  16. Guarino, N., Giaretta, P.: Ontologies and knowledge bases: Towards a terminological clarification. In: Mars, N.J.I. (ed.) Towards Very Large Knowledge Bases. IOS Press, Amsterdam (1995)

    Google Scholar 

  17. Meersman, R.: Web and ontologies: Playtime or business at the last frontier in computing? In: Proceedings of the NSF-EU Workshop on Database and Information Systems Research for Semantic Web and Enterprises (online), pp. 61–67 (2002)

    Google Scholar 

  18. De Leenheer, P., Meersman, R.: Towards a formal foundation of DOGMA ontology. part i: Lexon Base and Concept Definition Server. Technical Report STAR-2005-06, STARLab (2005)

    Google Scholar 

  19. De Leenheer, P., de Moor, A., Meersman, R.: Context dependency management in interorganizational ontology engineering. Technical Report STAR-2006-02, STARLab, Brussel (2006)

    Google Scholar 

  20. Halpin, T.: ORM 2. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005. LNCS, vol. 3762, pp. 676–687. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Halpin, T.: Information Modeling and Relational Databases: From Conceptual Analysis to Logical Design. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  22. Pretorious, J.A.: Lexon visualization: Visualizing binary fact types in ontology bases. In: IV, pp. 58–63 (2004)

    Google Scholar 

  23. Verheyden, P., De Bo, J., Meersman, R.: Semantically unlocking database content through ontology-based mediation. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372, pp. 109–126. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  24. Coessens, B., Christiaens, S., Verlinden, R.: Ontology guided data integration for computational prioritisation of disease genes. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4277, pp. 689–698. Springer, Heidelberg (accepted, 2006) (in press)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trog, D., Vereecken, J., Christiaens, S., De Leenheer, P., Meersman, R. (2006). T-Lex: A Role-Based Ontology Engineering Tool. In: Meersman, R., Tari, Z., Herrero, P. (eds) On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops. OTM 2006. Lecture Notes in Computer Science, vol 4278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11915072_22

Download citation

  • DOI: https://doi.org/10.1007/11915072_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48273-4

  • Online ISBN: 978-3-540-48276-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics