Skip to main content

Abstract

Data warehouses and OLAP systems help to interactively analyze huge volumes of data. Spatial OLAP refers to the integration of spatial data in multidimensional applications at the physical, logical and conceptual level. In order to include spatial information as a result of the decision-making process, we propose to define spatial measures as geographical objects in the multidimensional data model. This raises problems regarding aggregation operations and cube navigation in both semantic and implementation aspects. This paper presents a GeWOlap, a web based, integrated and extensible GIS-OLAP prototype, able to support geographical measures. Our approach is illustrated by its application in a project for the CORILA consortium (Consortium for Coordination of Research Activities concerning the Venice Lagoon System).

An erratum to this chapter can be found at http://dx.doi.org/10.1007/11915072_109.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bédard, Y., Merrett, T., Han, J.: Fundaments of Spatial Data Warehousing for Geographic Knowledge Discovery. In: Geographic Data Mining and Knowledge Discovery, pp. 53–73. Taylor and Francis, London (2001)

    Chapter  Google Scholar 

  2. Bimonte, S., Tchounikine, A., Miquel, M.: Towards a Spatial Multidimensional Model. In: Proceedings of the 8th International Workshop on Data Warehousing and OLAP (DOLAP 2005), pp. 39–46. ACM Press, New York (2005)

    Chapter  Google Scholar 

  3. Bimonte, S., Tchounikine, A., Miquel, M.: GeoCube, a Multidimensional Model and Navigation Operators Handling Complex Measures: Application in Spatial OLAP. In: Proceedings of the 4th Biennial International Conference Advances in Information Systems, Izmir, Turkey (2006)

    Google Scholar 

  4. Bimonte, S., Tchounikine, A., Miquel, M., Ahmed, T., Laurini, R.: Spatial On line Analytical Processing for Environmental Data. Quinta riunione Annuale. In: Programma di Ricerca 2004-2006, Venice, Italy (2006)

    Google Scholar 

  5. Damiani, M.L., Spaccapietra, S.: Spatial Data Warehouse Modelling. Processing and Managing Complex Data for Decision Support, pp. 21–27. Idea Group Publishing, USA (2006)

    Google Scholar 

  6. Ferri, F., Pourabbas, E., Rafanelli, M., Ricci, F.L.: Extending Geographic Databases for a Query Language to Support Queries Involving Statistical Data. In: Proc. 12th international conference on scientific and statistical database management, pp. 220–230. IEEE, Washington (2000)

    Chapter  Google Scholar 

  7. Fidalgo, R.N., Times, V.C., Silva, J., Souza, F.F.: GeoDWFrame: A Framework for Guiding the Design of Geographical Dimensional Schemas. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 26–37. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Jensen, C., Klygis, A., Pedersen, T., Timko, I.: Multidimensional data modelling for loca-tion-based services. VLDB Journal 13(1), 1–21 (2004)

    Article  Google Scholar 

  9. Han, J., Koperski, K., Stefanovic, N.: GeoMiner: A System Prototype for Spatial Data Mining. In: ACM-SIGMOD Int. Conference on Management and Knowoledge Discovery, ACM Press, Tucson Arizona (1997)

    Google Scholar 

  10. Hernandez, V., Voss, A., Göhring, W., Hopmann, C.: Sustainable decision support by the use of multi-level and multi-criteria spatial analysis on the Nicaragua Development Gateway. In: From pharaohs to geoinformatics Proceedings of FIG Working Week 2005 and 8th International Conference on the Global Spatial Data Infrastructure, Cairo, Egypt (2005)

    Google Scholar 

  11. Inmon, W.H.: The data warehouse and data mining. Communications of ACM 39(11), 49–50 (1996)

    Article  Google Scholar 

  12. JMap, as of (July 10, 2006), http://www.kheops-tech.com/en/jmap/solap.jsp

  13. Jpivot, as of (July 10, 2006), http://jpivot.sourceforge.net/

  14. MapXtreme Java, as of (July 10, 2006), http://extranet.mapinfo.com/products/Overview.cfm?productid=1162

  15. Malinowski, E., Zimányi, E.: Representing spatiality in a conceptual multidimensional model. In: Proceedings of the 12th annual ACM International workshop on Geographic information systems, pp. 12–22. ACM Press, New York (2004)

    Chapter  Google Scholar 

  16. Marchand, P., Brisebois, A., Bédard, Y., Edwards, G.: Implementation and evaluation of a hypercubebased method for spatio-temporal exploration and analysis. Journal of the International Society of Photogrammetry and Remote Sensing 59, 6–20 (2004)

    Article  Google Scholar 

  17. Mondrian, as of (July 10, 2006), http://mondrian.sourceforge.net/

  18. Rigaux, P., Scholl, M., Voisard, A.: Spatial databases with application to GIS. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  19. Rivest, S., Bédard, Y., Marchand, P.: Toward Better Support for Spatial Decision Making: Defining the Characteristics of Spatial OnLine Analytical Processing (SOLAP). Geomatica 55(4), 539–555 (2001)

    Google Scholar 

  20. Rivest, S., Bédard, Y., Proulx, M.-J., Nadeau, M., Hubert, F., Pastor, J.: SOLAP: Merging Business Intelligence with Geospatial Technology for Interactive Spatio-Temporal Exploration and Analysis of Data. Journal of International Society for Photogrammetry and Remote Sensing 60(1), 17–33 (2005)

    Article  Google Scholar 

  21. Scotch, M., Parmanto, B.: SOVAT: Spatial OLAP Visualization and Analysis Tool. In: Proceedings of 38th Hawaii International Conference on System Sciences, pp. 142–149. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  22. Shekhar, S., Lu, C.T., Tan, X., Chawla, S.: Map Cube: A Visualization Tool for Spatial Data Warehouses. In: Geographic Data Mining and Knowledge Discovery, pp. 74–109. Taylor and Francis, London (2001)

    Chapter  Google Scholar 

  23. Stefanovic, N., Han, J., Koperski, K.: Object-Based Selective Materialization for Efficient Implementation of Spatial Data Cubes. IEEE Transactions on Knowledge and Data, Engineering 12(6), 938–995 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bimonte, S., Wehrle, P., Tchounikine, A., Miquel, M. (2006). GeWOlap: A Web Based Spatial OLAP Proposal. In: Meersman, R., Tari, Z., Herrero, P. (eds) On the Move to Meaningful Internet Systems 2006: OTM 2006 Workshops. OTM 2006. Lecture Notes in Computer Science, vol 4278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11915072_66

Download citation

  • DOI: https://doi.org/10.1007/11915072_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48273-4

  • Online ISBN: 978-3-540-48276-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics