Abstract
In this paper we present a method of integrating theory reasoning into the instantiation framework. This integration is done in the black-box style, which allows us to integrate different theories in a uniform way. We prove completeness of the resulting calculus, provided that the theory reasoner is answer-complete and complete for reasoning with ground clauses. One of the distinctive features of our approach is that it allows us to employ off-the-shelf satisfiability solvers for ground clauses modulo theories, as a part of general first-order reasoning. As an application of this approach, we show how it is possible to combine the instantiation calculus with other calculi, such as ordered resolution and paramodulation.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armando, A., Ranise, S., Rusinowitch, M.: A Rewriting Approach to Satisfiability Procedures. Info. and Comp. 183(2), 140–164 (2003)
Baader, F., Snyder, W.: Unification theory. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 445–532. Elsevier, Amsterdam (2001)
Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 19–100. Elsevier, Amsterdam (2001)
Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational Theorem Proving for Hierarchic First-Order Theories. Applicable Algebra in Engineering, Communication and Computing 5(3/4), 193–212 (1994)
Barrett, C., de Moura, L., Stump, A.: Design and results for the 1st satisfiability modulo theories competition. Journal of Automated Reasoning (to appear, 2006)
Baumgartner, P.: FDPLL – a first-order Davis-Putnam-Logeman-Loveland Procedure. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 200–219. Springer, Heidelberg (2000)
Baumgartner, P., Tinelli, C.: The model evolution calculus. In: Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 350–364. Springer, Heidelberg (2003)
Baumgartner, P., Tinelli, C.: The model evolution calculus with equality. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 392–408. Springer, Heidelberg (2005)
Baumgartner, P.: An order theory resolution calculus. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 119–130. Springer, Heidelberg (1992)
Gallier, J., Snyder, W.: Complete sets of transformations for general E-unification. Theoretical Computer Science 67(2,3), 203–260 (1989)
Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)
Ganzinger, H., Hillenbrand, T., Waldmann, U.: Superposition modulo a shostak theory. In: Baader, F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 182–196. Springer, Heidelberg (2003)
Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: Proc. 18th IEEE Symposium on LICS, pp. 55–64. IEEE, Los Alamitos (2003)
Ganzinger, H., Korovin, K.: Integrating equational reasoning into instantiation-based theorem proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 71–84. Springer, Heidelberg (2004)
Ganzinger, H., Korovin, K.: Theory Instantiation (2006), Full version, Available at: http://www.cs.man.ac.uk/~korovink/
Hooker, J., Rago, G., Chandru, V., Shrivastava, A.: Partial instantiation methods for inference in first order logic. J. of Automated Reasoning 28, 371–396 (2002)
Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics with a concrete domain in the framework of resolution. In: ECAI, pp. 353–357 (2004)
Letz, R., Stenz, G.: Proof and model generation with disconnection tableaux. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS, vol. 2250, pp. 142–156. Springer, Heidelberg (2001)
Letz, R., Stenz, G.: Integration of equality reasoning into the disconnection calculus. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 176–190. Springer, Heidelberg (2002)
Lynch, C., Morawska, B.: Goal-directed E-unification. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 231–245. Springer, Heidelberg (2001)
Nieuwenhuis, R.: On narrowing, refutation proofs and constraints. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914, pp. 56–70. Springer, Heidelberg (1995)
Nieuwenhuis, R., Oliveras, A.: Decision Procedures for SAT, SAT Modulo Theories and Beyond. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS, vol. 3835, pp. 23–46. Springer, Heidelberg (2005)
Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443. Elsevier, Amsterdam (2001)
Plaisted, D., Zhu, Y.: Ordered semantic hyper-linking. J. of Automated Reasoning 25(3), 167–217 (2000)
Stickel, M.: Automated deduction by theory resolution. J. Autom. Reasoning 1(4), 333–355 (1985)
Tinelli, C.: A DPLL-based calculus for ground satisfiability modulo theories. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 308–319. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ganzinger, H., Korovin, K. (2006). Theory Instantiation. In: Hermann, M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2006. Lecture Notes in Computer Science(), vol 4246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11916277_34
Download citation
DOI: https://doi.org/10.1007/11916277_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48281-9
Online ISBN: 978-3-540-48282-6
eBook Packages: Computer ScienceComputer Science (R0)