Skip to main content

On a Local-Step Cut-Elimination Procedure for the Intuitionistic Sequent Calculus

  • Conference paper
Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4246))

Abstract

In this paper we investigate, for intuitionistic implicational logic, the relationship between normalization in natural deduction and cut-elimination in a standard sequent calculus. First we identify a subset of proofs in the sequent calculus that correspond to proofs in natural deduction. Then we define a reduction relation on those proofs that exactly corresponds to normalization in natural deduction. The reduction relation is simulated soundly and completely by a cut-elimination procedure which consists of local proof transformations. It follows that the sequent calculus with our cut-elimination procedure is a proper extension that is conservative over natural deduction with normalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bloo, R., Geuvers, H.: Explicit substitution: On the edge of strong normalization. Theoretical Computer Science 211, 375–395 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dyckhoff, R., Pinto, L.: Cut-elimination and a permutation-free sequent calculus for intuitionistic logic. Studia Logica 60, 107–118 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dyckhoff, R., Urban, C.: Strong normalization of Herbelin’s explicit substitution calculus with substitution propagation. Journal of Logic and Computation 13, 689–706 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Espírito Santo, J.: Revisiting the correspondence between cut elimination and normalisation. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 600–611. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Espírito Santo, J.: An isomorphism between a fragment of sequent calculus and an extension of natural deduction. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS, vol. 2514, pp. 352–366. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39, 176–210, 405–431 (1935); English translation in [11], pp. 68–131

    Google Scholar 

  7. Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  8. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pp. 479–490. Academic Press, London (1980)

    Google Scholar 

  9. Pfenning, F.: Structural cut elimination: I. intuitionistic and classical logic. Information and Computation 157, 84–141 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Prawitz, D.: Natural Deduction, A Proof-Theoretical Study. Almquist and Wiksell (1965)

    Google Scholar 

  11. Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. North-Holland (1969)

    Google Scholar 

  12. Urban, C.: Classical Logic and Computation. PhD thesis, University of Cambridge (2000)

    Google Scholar 

  13. Urban, C., Bierman, G.M.: Strong normalisation of cut-elimination in classical logic. Fundamenta Informaticae 45, 123–155 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kikuchi, K. (2006). On a Local-Step Cut-Elimination Procedure for the Intuitionistic Sequent Calculus. In: Hermann, M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2006. Lecture Notes in Computer Science(), vol 4246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11916277_9

Download citation

  • DOI: https://doi.org/10.1007/11916277_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48281-9

  • Online ISBN: 978-3-540-48282-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics