Abstract
In this paper we investigate, for intuitionistic implicational logic, the relationship between normalization in natural deduction and cut-elimination in a standard sequent calculus. First we identify a subset of proofs in the sequent calculus that correspond to proofs in natural deduction. Then we define a reduction relation on those proofs that exactly corresponds to normalization in natural deduction. The reduction relation is simulated soundly and completely by a cut-elimination procedure which consists of local proof transformations. It follows that the sequent calculus with our cut-elimination procedure is a proper extension that is conservative over natural deduction with normalization.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bloo, R., Geuvers, H.: Explicit substitution: On the edge of strong normalization. Theoretical Computer Science 211, 375–395 (1999)
Dyckhoff, R., Pinto, L.: Cut-elimination and a permutation-free sequent calculus for intuitionistic logic. Studia Logica 60, 107–118 (1998)
Dyckhoff, R., Urban, C.: Strong normalization of Herbelin’s explicit substitution calculus with substitution propagation. Journal of Logic and Computation 13, 689–706 (2003)
EspÃrito Santo, J.: Revisiting the correspondence between cut elimination and normalisation. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 600–611. Springer, Heidelberg (2000)
EspÃrito Santo, J.: An isomorphism between a fragment of sequent calculus and an extension of natural deduction. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS, vol. 2514, pp. 352–366. Springer, Heidelberg (2002)
Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift 39, 176–210, 405–431 (1935); English translation in [11], pp. 68–131
Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)
Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pp. 479–490. Academic Press, London (1980)
Pfenning, F.: Structural cut elimination: I. intuitionistic and classical logic. Information and Computation 157, 84–141 (2000)
Prawitz, D.: Natural Deduction, A Proof-Theoretical Study. Almquist and Wiksell (1965)
Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. North-Holland (1969)
Urban, C.: Classical Logic and Computation. PhD thesis, University of Cambridge (2000)
Urban, C., Bierman, G.M.: Strong normalisation of cut-elimination in classical logic. Fundamenta Informaticae 45, 123–155 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kikuchi, K. (2006). On a Local-Step Cut-Elimination Procedure for the Intuitionistic Sequent Calculus. In: Hermann, M., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2006. Lecture Notes in Computer Science(), vol 4246. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11916277_9
Download citation
DOI: https://doi.org/10.1007/11916277_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48281-9
Online ISBN: 978-3-540-48282-6
eBook Packages: Computer ScienceComputer Science (R0)