
Please do not remove this page

Design options for subscription managers
Mbala-Hikolo, Aloys; Padgham, Lin; Winikoff, Michael
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Design-options-for-subscription-managers/9921859249701341/filesAn
dLinks?index=0

Mbala-Hikolo, A., Padgham, L., & Winikoff, M. (2005). Design options for subscription managers.
Agent-Oriented Information Systems III: Proceedings of the Fourth International Joint Conference on
Autonomous Agents and Multi Agent Systems - Seventh International Workshop on Agent-Oriented
Information Systems (AOIS), 259–274. https://doi.org/10.1007/11916291_18

Published Version: https://doi.org/10.1007/11916291_18

Document Version: Accepted Manuscript

Downloaded On 2024/04/25 19:17:41 +1000
© Springer-Verlag Berlin Heidelberg 2006
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Design-options-for-subscription-managers/9921859249701341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Design-options-for-subscription-managers/9921859249701341
http://doi.org/doi:https://doi.org/10.1007/11916291_18
https://researchrepository.rmit.edu.au


Design Options for Subscription Managers

Aloys Mbala
RMIT University

Melbourne, Australia
aloys@cs.rmit.edu.au

Lin Padgham
RMIT University

Melbourne, Australia
linpa@cs.rmit.edu.au

Michael Winikoff
RMIT University

Melbourne, Australia
winikoff@cs.rmit.edu.au

Abstract

An important issue in open agent systems such as the In-
ternet is the discovery of service providers by potential con-
sumers (requesters). This paper is concerned with services
that involve the ongoing provision of up-to-date information
to requesters. We explore three separate issues: subscrip-
tion to an information provider for ongoing provision of in-
formation; monitoring for new information providers; and
maintaining awareness of when providers disappear from
the system. We explore several models for how this func-
tionality may best be provided, with emphasis on the ways
in which certain choices affect the overall system; and pro-
vide an analysis of preferred design options for environ-
ments with different characteristics.

1. Introduction

An important issue in open agent systems such as the In-
ternet is the discovery of service providers by potential con-
sumers (requesters). There is a broad range of work in this
area, including work on web service description languages,
such as WSDL1 and OWL-S [10], as well as work on dis-
tributed search algorithms and architectures such as peer-
to-peer systems [11]. A common approach, even in peer-
to-peer systems, is to have some specialised agents (or ser-
vices) which assist providers and requesters to find one an-
other. These are variously called yellow page agents [1],
directory facilitators2, brokers [4], and match-makers [12]
with the term middle-agent being used to characterise these
kinds of agents. UDDI (Universal Description, Discovery
and Integration) directories3 are one standard instantiation
of such a facility while FIPA (Foundation for Intelligent
Physical Agents) Directory Facilitators are another.

1 http://www.w3.org/TR/wsdl
2 http://www.fipa.org/specs/fipa00023/SC00023K.html
3 http://www.uddi.org

In many application areas a large number of the ser-
vices that are required from other entities in the system
are services that provide information. In many cases what
is required is not just information at a given point in time,
but rather ongoing updates of information as the situation
changes. For example, in an intelligent alerting system that
we are working on with the Australian Bureau of Meteo-
rology [9], if the fire monitoring agent within the system
discovers a new fire, it will then want to be informed of
any weather events that may affect the fire, such as nearby
storms. It is clearly preferable for the relevant agent to set
up subscriptions and to be notified immediately when rel-
evant new information becomes available, rather than to
make regular requests to determine whether new informa-
tion is available. This notion of subscription is well known
and it is supported by standard protocols4.

However, an additional facility is needed. If the subscrip-
tions are long-lived then it is quite likely that there will be
changes in the available information providers. The sub-
scribing agent may well need to be made aware of new
information providers that join the system, and of any in-
formation providers that it has subscribed to that leave the
system. Again, rather than have the subscribing agent make
periodic requests, it is preferable for it to subscribe to this
information. This subscription is to changes in the avail-
able (relevant) information providers rather than to infor-
mation, and is made with the middle agent. This requires
the middle-agent to provide a monitoring capability, in ad-
dition to the more commonly discussed matchmaking (or
brokering) functionality [5].

By providing information on changes in available infor-
mation providers, we allow additional flexibility and intelli-
gence in the requesters. For example, in the meteorology ap-
plication two kinds of weather information sources are used
in reasoning about whether there is an alertable situation
with respect to a particular fire. If the storm observations
from radar become unavailable, then storm likelihood fore-
casts from the atmospheric model are accessed instead. The

4 e.g. http://www.fipa.org/specs/fipa00035/

1

E79927
Typewritten Text
Citation: Mbala-Hikolo, A, Padgham, L and Winikoff, M 2005, 'Design options for subscription managers', in Agent-Oriented Information Systems III : Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multi Agent Systems - Seventh International Workshop on Agent-Oriented Information Systems (AOIS), Utrecht, Netherlands, 26 July and 27 October 2005. 

E79927
Typewritten Text

E79927
Typewritten Text



provision of information on available relevant providers to
requesters is a key difference between our work and event
notification systems such as Siena [2] or NaradaBrokering
[7], which do not provide requesters with information on
changes to available providers5.

In this paper we explore design options for “subscrip-
tion manager” middle agents which support subscriptions to
changes in available relevant information providers. There
are three issues that we concentrate on. Firstly, the mech-
anism that allows an information requester to be continu-
ally updated regarding new information sources. Secondly,
the details of how subscriptions are created and cancelled.
Thirdly, how the departure of agents from the system is de-
tected and what is done in response to detecting a “dead”
agent. With each of these issues we will explore what func-
tionality can potentially reside with the middle-agent, and
the costs and benefits of the alternative approaches.

The issues discussed in this paper are only a part of
a complete solution. In order to implement a system one
must also define a language for describing services and re-
quests and a matching mechanism between these. However,
these issues have been explored in previous work and a
wide range of options exist for service/request description
and matching including standards around web service, FIPA
standards, KQML [6], and others such as LARKS [13] and
Infosleuth [3].

The need for subscription and monitoring services vary
from application to application, but we would suggest that
they are quite broadly applicable. For example in a travel
and tourism services network it would be likely that there
was a need to subscribe to information on schedule updates
for planes, buses and trains. Similarly, a tourism operator in
a particular region is likely to want to monitor for any new
providers of services such as accommodation, tours and car
rentals, in the region of interest. Similarly in an e-business
domain, subscription to catalogues of items available from
known providers may well make sense, and monitoring of
providers of certain kinds of items is also motivated. Conse-
quently we argue that subscription support, and monitoring
for providers of certain kinds of services joining and leav-
ing the system, are infrastructure facilities that are required
in a dynamic and open domain of services. These capabili-
ties should be provided by middle-agents. In the rest of this
paper we explore several models for how this functionality
may best be provided, with emphasis on the ways in which
certain choices affect the overall system.

5 What they provide corresponds to the design option where decision
making is delegated to the middle agent, i.e. what we call subscribe-
all in section 4.

2. The Interaction Models

Service Discovery frameworks can be categorised in two
groups. The first group includes peer-to-peer dissemination
models where a peer propagates its requests through the net-
work it belongs to and expects a list of relevant providers
from its peers. A peer can act as a provider, a requester
or simply be a kind of proxy that just redirects a given
message to others. An alternative framework uses middle-
agents where requesters and providers register to a middle-
agent which provides some kind of connection service to as-
sist the agents to find other relevant agents. Some systems
propose a peer-to-peer structure amongst the middle-agents
[8] in order to distribute the functionality of registering and
servicing the client agents.

In this work we do not consider the structure of the
middle-agents. Although we assume that in a large sys-
tem this functionality would be distributed in some man-
ner, this is left as future work, building on a range of exist-
ing work (e.g. [7, 2, 11, 8]). What we consider here is the re-
lationship between the middle-agent (or network of middle-
agents) and what we call the end-agents, namely the service
requesters or service providers.6

Previous work [4, 5, 12, 14] has compared different
styles of middle-agents and concluded that Matchmakers
which provide a list of providers matching a request, are the
most appropriate type of middle-agent for large open sys-
tems. Middle-agents such as broadcasters and blackboards
which simply pass on all connections, un-filtered, result in
unnecessarily large lists of agents being provided, and also
require end-agents to have individual matchmaking capabil-
ities. Brokers, which manage all interactions with a provider
on behalf of a requester have the disadvantage that they are
a bottleneck in large systems. In this work we assume a ba-
sic matchmaking capability, and then add to this a Subscrip-
tion Management function, which we explore in further de-
tail.

There are three different processes that we explore as
part of this work. The first is the mechanism to allow an in-
formation requester to be continually updated regarding the
existence of new information sources of a particular kind.
The second is the basic subscription mechanism to support
an information requester being able to subscribe to provider
agents, and cancel subscriptions. The third is an ability to
be aware of agents that disappear from the system. With
each of these aspects we will explore what functionality can
potentially reside with the middle-agent, and the costs and
benefits of the alternative approaches.

6 A single agent can be both a provider and a requester, but for the pur-
pose of this work we consider them separately.

2



2.1. Monitoring for new arrivals

As indicated previously, a common need in dynamic sys-
tems is for agents to be aware of new services arising in the
system that may be of interest to them. One way to achieve
this is to have middle-agents maintain information about re-
quester needs, and update the requesters as new providers
register. However this ability does not appear to be com-
mon in the various kinds of middle-agents that exist, or are
discussed in detail in the literature. Retsina [12] mentions a
monitoring capability, although very little detail is given7.
The notion of facilitator defined by Finin et. al. [6] is broad
and encompasses monitoring of both information and infor-
mation providers, but little detail is given (for example, the
issue of detecting “dead” agents is not discussed), and there
is no exploration of the design options and associated trade-
offs.

Figure 1 indicates the type of mechanism we are sug-
gesting. Providers and requesters send their profiles to
the middle-agent which maintains information about
both. When requesters request monitoring for a particu-
lar type of information, they are first sent an initial list of
matches (message 3), and subsequently, if any new match-
ing providers advertise with the middle-agent (message 4),
the requester is sent an update (message 5).

Requester Middle Provider 1 Provider 2

1. Advertise

2. Request Monitor

3. List of Providers

4. Advertise

5. Update

Figure 1. The discovery mechanism

However, this figure is incomplete as it focuses only on
the monitoring capability. It does not consider aspects of
the subscription life-cycle such as who sets up a subscrip-
tion? Who cancels a subscription? Or, once a subscription
has been established, who ensures that the agents involved
in the subscription are still alive? These aspects are consid-
ered below. Of course, the monitoring capability must also
include a mechanism for cancelling monitoring when it is
no longer required, or cancelling an advertised profile.

7 The notion of “monitor” vs. “single shot” match-making is mentioned
on page 42 of [12].

2.2. Subscription Management

In order to handle subscriptions information providers
need to be able to provide a subscription facility, sending in-
formation to their subscribers either at regular intervals, or
when relevant changes occur. Hence there must be a mech-
anism to set up and cancel such subscriptions.

From the point of view of the information requester
wishing to subscribe to a certain kind of information, they
may wish to subscribe to all sources of information of a cer-
tain type, or a single source. The initial action would be a
request to the middle-agent with a query describing the in-
formation need (attached to either a monitoring request, or
a one-off request). At that point it would be possible either
for the middle-agent to return a list of matching providers,
as in figure 1, or for the middle-agent to simply set up the
subscription(s). If the latter was done, presumably it would
be necessary to have two forms of the request: one for sub-
scribe to all, and one for subscribe to one8.

The possible value in having the middle-agent set up the
subscription would be that fewer messages are needed in
the system as a whole. On receiving the request, the middle-
agent could simply send the subscription message to the rel-
evant information provider(s), and the requester would be-
gin to receive information. Subscription cancellations could
be sent either to the middle-agent, or directly to the in-
formation provider, if we assume that the identity of the
provider(s) is known to the requester once information be-
gins to arrive.

2.3. Monitoring for disappearances

If an agent has a subscription to an information source
it is expecting that information will be sent whenever rele-
vant. However, it is possible that the information provider
disappears from the system, in which case it may be im-
portant for the information subscriber to know of this. This
fact may affect reasoning done, or it may result in subscrib-
ing to other information sources.

For example in the meteorology application we are
working with, two kinds of weather information sources are
used in reasoning about whether there is an alertable situ-
ation with respect to a particular fire. If the storm observa-
tions from radar become unavailable, then storm likelihood
forecasts from the atmospheric model are accessed in-
stead.

The only reliable way to be sure of knowing when an
agent disappears is for some process to check liveness reg-
ularly. It is possible for this to be done by all interested sub-
scribers. However, assuming there are likely to be multiple
subscribers to any given information source, this is creating

8 An additional form would be subscribe to N .

3



more message traffic than necessary. Another option would
be for this to be done by the middle agent, and for the infor-
mation about a provider’s disappearance to be passed on to
the relevant agents.

3. Analysis

In this section we analyse the alternative design choices
for a Subscription Manager middle-agent. The analysis fo-
cuses primarily on the message traffic, and looks specifi-
cally at the number of messages, the total size of the mes-
sages, and at bottlenecks in the system. The number of mes-
sages circulating in the system is a natural and important pa-
rameter for the evaluation of service discovery frameworks
since it is a reasonable approximate measure of the work-
load of the system, and an analysis of the message traffic
received and sent by a given agent can be used to detect po-
tential bottlenecks. However, using only the number of mes-
sages isn’t sufficient, because it ignores the size of the mes-
sages, and therefore we also use the size of the messages to
estimate the amount of network traffic.

The analysis in this section uses the following terms:

• R: the number of requester agents in the system

• P : the number of provider agents in the system

• α: the probability of a random capability and a random
interest matching (0 ≤ α ≤ 1). This is a measure of
the matching precision, and can be expected to be well
below 0.5.

• RF : the (average) number of requesters whose inter-
ests match a given provider’s capabilities RF = α×R.

• PF : the (average) number of providers whose capabil-
ities match a given requester’s interests PF = α × P .

• S: the number of subscriptions in the system. If each
requester agent subscribes to all relevant providers
(PF ) then the number of subscriptions is S = R×PF .
If each requester agent subscribes to PS providers then
S = R × PS .

• PS : the (average) number of providers that a requester
agent subscribes to. This can be all relevant providers
(PF ), a single provider, or an arbitrary number (1 ≤

PS ≤ PF ).

• RS : the (average) number of requesters that are sub-
scribed to a given provider (0 ≤ RS ≤ RF ). The value
of RS depends on whether requesters subscribe to one
provider, all providers, or PS providers, and can be
calculated by dividing the number of subscriptions in
the system (S) by the number of providers. If each re-
quester agent subscribes to all relevant providers (PF )
then S = R × PF and RS = (R × PF ) ÷ P =
(R × α × P ) ÷ P = R × α = RF . If each requester
agent subscribes to PS providers then S = R×PS and

RS = R×PS ÷P , which is just PS if there are equal
numbers of providers and requesters.

• PD: the number of provider agents that have left the
system since the last liveness monitoring check (0 ≤

PD ≤ P )

• k: the size of a description of an agent’s capabilities or
interests relative to the size of its name (k > 1). This
is used in computing the size of messages.

Our presentation of the analysis is structured according
to the life-cycle of the system: we consider the metrics as-
sociated with adding an agent (requester or provider), with
cancelling subscriptions, and with monitoring the liveness
of provider agents.

3.1. Adding an Agent

3.1.1. Adding a Requester Agent The sequence of mes-
sages associated with adding a requester agent depends on
whether subscription is done by the middle-agent or the re-
quester.

If subscription is done by the middle-agent then the se-
quence of messages is: (1) the requester registers with the
middle-agent its interests, (2) the middle-agent sends mes-
sages to all relevant providers asking them to subscribe the
requester, (3) the middle-agent optionally sends a message
informing the requester of its subscriptions. The number of
messages involved is 1 + PF if the third (optional) notifica-
tion message isn’t sent and 2 + PF if it is.

If we assume that each requester wants to subscribe
to PS relevant providers, and that the decision of which
providers can be made on its behalf by the middle-agent,
then the number of messages is 1 + PS .

If subscription is done by the requester then the sequence
of messages is: (1) the requester registers with the middle-
agent its interests, (2) the middle-agent responds with a list
of relevant providers, (3) the requester selects some (PS) or
all (PF ) of the providers in the list and sends each of the
selected providers a subscription request. If the requester
selects a subset of the available relevant providers and the
middle-agent needs to track subscriptions then it must be
notified by the requester of its choice of providers, unless it
is assumed that requesters always subscribe to all relevant
available providers or to some easily predicted subset such
as only the first provider in the list. The number of mes-
sages involved is 2 + PS (if the middle-agent needs to be
informed then the number of messages goes up by one).

We now consider the message size and begin with the
first case where subscription is done by the middle-agent. If
we assume for the moment that requesters subscribe to all
relevant providers (PF ), then the size of the three messages
is respectively k for the first step, 1 for each of the mes-
sages involved in the second step , and (optionally) PF for

4



the third step giving a total size of k+PF (or k+2PF if re-
questers are informed of their subscriptions). If we assume
that each requester subscribes to PS providers, then the to-
tal size if k + PS (or k + 2PS if requesters are informed of
their subscriptions).

Consider now the second case, where subscription is
done by the requester. If we assume for the moment that re-
questers subscribe to all relevant providers, then the size of
the three messages is respectively k, PF , and 1 for each of
the PF messages from requester to providers, giving a to-
tal of k + 2PF (and k + 3PF if the middle-agent needs to
be informed). If we assume that requesters will only sub-
scribe to PS providers, then the message to the requester
containing the list of relevant providers will need to con-
tain the provider’s capabilities, as well as their names (so
that the requester can decide which providers to subscribe
to). Therefore, the size of the messages is k+kPF +PS (or
k + kPF + 2PS if the middle-agent needs to be informed).

These cases are summarised in figure 2. In all cases in-
forming the other agent takes a single additional message of
size equal to the number of desired providers.

Middle Subscribes Requester Subscribes
All 1 + PF 2 + PF

providers (k + PF ) (k + 2PF )
PS 1 + PS 2 + PS

providers (k + PS) (k + kPF + PS)

Figure 2. Adding a requester (message size
analysis is in brackets)

In summary, having the middle-agent subscribe saves a
single (potentially large) message, and if the middle-agent
needs to track subscriptions, then a second message is also
saved (assuming that requesters don’t need to be notified of
their subscriptions). However, having the middle-agent sub-
scribe prevents a requester from being able to directly select
its provider(s), and if requesters need to subscribe to some-
thing other than all providers then there is additional com-
plexity in specifying how many providers are desired (e.g.
one, all, or some constant number PS).

3.1.2. Adding a Provider Agent The sequence of mes-
sages associated with adding a provider agent depends on
whether subscription is done by the middle-agent or the re-
quester.

For the moment let us assume that requesters subscribe
to all relevant providers. If subscription is done by the
middle-agent then the sequence of messages is: (1) the
provider registers with the middle-agent its capabilities, (2)
the middle agent sends a message back to the provider

Middle Subscribes Requester Subscribes
All 2 1 + 2RF

providers (k + RF ) (k + 2RF )
typical PS 1 1
providers (k) (k)
max. PS 2 1 + RF + RS

providers (k + RS) (k + RF + RS)

Figure 3. Adding a provider (message size
analysis is in brackets)

with all relevant requesters that it should subscribe (possible
none), and (3) the requesters are (optionally) informed of
their new subscriptions. The number of messages involved
is 2 if the third (optional) notification message isn’t sent and
2+RF if it is. The messages informing the requesters (step
3) could be sent by either the middle-agent or the provider.
In the interests of trying to avoid overloading the middle-
agent it is preferable to have the provider inform the re-
questers.

If subscription is done by requesters then the sequence
is: (1) the provider registers with the middle agent, (2) the
middle-agent sends a message to each relevant requester
with the identity of the provider, (3) each requester sends a
subscription request message to the new provider. The num-
ber of messages involved is 1 + 2RF . Note that there is a
bottleneck issue here: the provider will, during a short time
period, be sent messages from a number of requesters, po-
tentially overloading it.

Considering the size of the messages, in the first case,
where subscription is done by the middle agent, the size of
the three messages is respectively k, RF and (optionally) 1
for each of the RF messages giving a total size of k + RF

(or k + 2RF if requesters are informed of their subscrip-
tions). Considering the second case, where subscription is
done by the requester, the size of the three messages is re-
spectively k for the first message, 1 for each of the RF mes-
sages, and 1 for each of the RF messages from requesters
to the provider, giving a total of k + 2RF .

These cases are summarised in the top row of figure 3.
Informing the requester (if the Subscription Manager sub-
scribes) takes an additional RF messages of size 1.

The bottom two rows of figure 3 assume that requesters
only want to be subscribed to a fixed number of providers.
In this case when a provider joins an existing multi-agent
system most or all requesters will already have the desired
number of subscriptions. This is because requesters sub-
scribe when they join the system and departing providers
are detected and replaced, therefore the only situation where
a requester will not have its desired number of subscrip-
tions is where there are not enough relevant providers in the

5



system. In this case the typical number of messages gener-
ated by a new provider joining an existing system is one (of
size k), but it is possible for this to be higher: up to the (un-
likely) maximum shown in the third row of figure 3. Inform-
ing the other agent takes an additional RS messages of size
1.

In summary, if requesters subscribe to all rele-
vant providers then having the middle-agent subscribe
saves a significant number of messages and also has a sav-
ing in terms of the size of messages. Additionally, if the
requesters subscribe then there are potential bottleneck is-
sues. If requesters subscribe to a fixed number of providers
then the saving is much smaller.

3.2. Cancelling Subscriptions

Cancelling a subscription can be done directly, by hav-
ing the requester send a message to the provider (or vice
versa if the provider is the one cancelling the subscription).
Alternatively, cancelling a subscription can be done via the
middle-agent. In the first case, cancelling a subscription in-
volves a single message, with an optional second message
informing the middle-agent. Both messages have size 1. In
the second case, cancelling a subscription involves two mes-
sages each with size 1. Thus the difference in terms of mes-
sages involved between direct and indirect cancellation of
subscriptions is minor, and is non-existent if the middle-
agent needs to be informed of the cancellation.

If a provider wishes to cancel all of its subscriptions
then there are a number of cases: (1) If requesters don’t
need to be kept informed of their subscriptions then a sin-
gle message (of size 1) to the middle-agent is all that is re-
quired. (2) If requesters need to be told, but the middle-
agent doesn’t need to be told then there are RS messages
from the provider to the requesters that are subscribed to it.
(3) If both middle-agent and requester agents need to be in-
formed then there is one message from the provider to the
middle-agent, and RS messages from the provider to the re-
questers. Although it is possible to have the middle-agent
inform the requesters, this increases the load on the middle-
agent, requires that the provider specify explicitly the list of
subscribed requesters (unless the middle agent has a record
of subscriptions), and doesn’t give any benefit.

Thus if a provider wishes to cancel all of its subscriptions
then it is most efficient to not inform the requesters, but only
inform the middle-agent. However, if the requesters do need
to be informed then the cost of also informing the middle-
agent is low.

The analysis for a requester cancelling all of its subscrip-
tions is similar. If the requester agent does not know who it
is subscribed to then it needs to first obtain the list from
the middle-agent (which also has the side effect of inform-
ing the middle agent of the cancelled subscriptions). In this

case cancelling all subscriptions requires 2 + PS messages
with total size 1 + 2PS . If the requester agent does know
who it is subscribed to then informing the providers takes
PS messages of size 1, and informing the middle-agent is a
single additional (size 1) message.

3.3. Monitoring Liveness

Providers need to be monitored, so that a provider dis-
appearing is detected and appropriate action taken. Moni-
toring liveness of requesters by providers doesn’t seem to
make sense: if the providers have information to send, then
that transmission acts as a ping9. If they don’t have informa-
tion to send, then they don’t really care about the requester
being alive! If monitoring of requesters is desired, then it
makes sense to have the middle-agent do this.

Monitoring of providers can be done either by the
middle-agent or by the requesters. Consider the first possi-
bility, in this case the cost for checking each provider for
liveness can be worked out as follows10. Firstly, there are
P messages to the providers. Secondly, there are PD re-
sponses, one for each departed agent11, where PD is the
number of departed agents found in this check (we as-
sume that live agents do not respond). If subscriptions are
done by the requester agents then the middle-agent will
need to inform the requesters (PD×RF messages12.), oth-
erwise informing the requester agents is optional.

Consider now the second possibility, where monitoring
the providers is done by the requester agents. This is con-
siderably less efficient because each provider will be mon-
itored (redundantly!) by each requester agent that is sub-
scribed to it. More precisely, each provider will be moni-
tored by RS agents. Thus P×RS messages are sent, and
PD×RS responses received. If the middle-agent needs to
be informed, then it will (eventually) receive messages from
each of the RS requester agents that are monitoring the de-
parted provider (an additional RS × PD messages).

An alternative is for the first requester agent that detects a
departed provider to inform the other requester agents that
are subscribed to that provider, rather than allowing them
to independently realise that the provider is departed. This
involves the following sequence of messages: (1) a mes-
sage from a requester to the departed provider, (2) a mes-
sage from the departed provider’s platform to the requester,
(3) a message from the requester to the middle-agent, and

9 That is, we assume that the provider will detect a departed requester
when it attempts to send the requester information.

10 Note that a reasonable design decision is to spread this monitoring
over a time period by gradually traversing a list of providers.

11 The responses are sent by either the relevant agent platform (saying
that the agent is unknown), or from the middle-ware (saying that the
agent platform is unknown).

12 If the middle-agent has an up-to-date record of the subscriptions then
this can be tightened to PD × RS

6



Who pings? Number of + Implicit
messages pings

Middle P + PD N/A
agent (P + PD + PDRS)

Requester PRS + PDRS 2PDRS

agents (PRS + 2PDRS) (3PDRS)
Improved PRS + 2PD 2PD + PDRS

Figure 4. Monitoring provider liveness
(bracketed formulae include informing)

(4) RS − 1 messages from the middle-agent to the other re-
questers. The total number of messages for pinging a single
departed provider then is 3 + (RS − 1) = 2 + RS and the
message size is also 2 + RS . The total number of messages
for pinging all providers is this multiplied by the number of
departed providers, plus RS messages to each live provider,
i.e. (P − PD) ×RS + PD × (2 + RS) = P ×RS + 2PD.

Note that this more efficient, but more complex, ap-
proach requires that the middle-agent have a record of sub-
scriptions (otherwise it is more expensive: replace RS by
RF ). This approach also avoids a bottleneck issue: the
middle-agent is only informed of a departed provider agent
once, rather than RS times.

One potential further saving in having liveness monitor-
ing be done by requesters is that it becomes possible to use
“implicit” pings: if a provider sends data to a requester then
this is evidence that the provider is alive and it can be as-
sumed to have been pinged. If a provider agent is sending
data frequently enough, then it will never need to be explic-
itly pinged as long as it is alive. If this is the case, and as-
suming that the optimisation described above is not used,
then the number of ping messages that are sent goes down
from P × RS to PD × RS , giving 2 × PD × RS messages
overall and 3×PD ×RS if the middle-agent needs to be in-
formed. If the optimisation described above is included then
the effect of implicit pings is, in the best case, to eliminate
the pinging of live agents, i.e. the term (P−PD)×RS, leav-
ing PD × (2 + RS) = 2PD + PDRS messages.

This analysis is summarised in figure 4. The bracketed
formulae include informing the requesters (if the middle
agent pings) or middle-agent (if requesters ping). The third
row (“Improved”) is when requesters ping, but includes
informing both the middle-agent and other (relevant) re-
quester agents of a departed provider.

The analysis above only considers monitoring and de-
tecting departed agents. What is done in response to de-
tecting a departed agent depends on the subscription pol-
icy of the requester agents that were subscribed to the de-
parted agent. If a requester is subscribed to all relevant
providers then there is nothing further to be done – there are

no other relevant providers that could be added, because the
requester is already subscribed to them. On the other hand,
if a requester is subscribed to one provider (or, more gen-
erally, PS providers), then a replacement provider needs to
be found. How this is done, and the number of messages in-
volved, depends on whether subscriptions are done by the
requester or by the middle-agent. The analysis is similar to
that presented in section 3.1.1.

4. Subscription Manager Specification

Based on the analysis in the previous section we now
specify a Subscription Manager middle-agent. The most
difficult issue is regarding whether or not the Subscription
manager should actually set up subscriptions on behalf of
a requester. On the one hand there is a reasonable sav-
ings in doing this and it assists with bottleneck issues at
the provider. On the other hand it removes flexibility from
the requester, which may need or prefer to make its own
choices. If requesters subscribe to all providers, then there
is no issue with flexibility, and the savings are significant,
so in this case it makes sense to have the Subscription Man-
ager subscribe. On the other hand, if requesters subscribe
to a fixed number of providers (and especially if this fixed
number is low) then the savings are lower, and allowing
the requester to select its providers becomes more impor-
tant. In this case it may make more sense to have requesters
subscribe themselves. Consequently we recommend that the
Subscription Manager allow both options.

In addition to supporting subscription being done by ei-
ther requesters or the Subscription Manager, there is also
a need to allow for both one-off and ongoing match-
ing, as well as subscription to one or subscription to all13.
This requires that the interface allows four14 kind of re-
quests: single-match (requester subscribes), ongoing-match
(requester subscribes), subscribe-one (Subscription Man-
ager subscribes requester, and replaces if provider disap-
pears), and subscribe-all (Subscription Manager subscribes
requester, and subscribes to new providers as they ar-
rive). Additionally, the Subscription Manager’s interface
needs to allow for a requester to cancel the ongoing-match,
subscribe-one or subscribe-all, and for a provider to can-
cel its registration.

It is slightly more efficient for end-agents to manage can-
cellations directly, if the Subscription Manager does not
need to be updated. If the Subscription Manager is updated
the overhead is little. Consequently we recommend that
cancellations be done directly between end-agents, since it

13 We assume that subscription to some other number must be handled
by the requester.

14 If the requester subscribes then it doesn’t make sense to distinguish be-
tween subscribe-to-one and subscribe-to-all. If the middle-agent sub-
scribes then an ongoing match is assumed.

7



relieves the Subscription Manager of a centralised responsi-
bility that carries no real benefit. Requesters with an ongo-
ing subscribe-one request, will need to notify the Subscrip-
tion Manager of the cancellation so that they can be sub-
scribed to a new provider.

Monitoring of provider liveness can be done by ei-
ther requesters or by the Subscription Manager. If we use
the improved version of requester monitoring, and assume
that “implicit” pings completely eliminate pinging of live
agents, then requester-based liveness monitoring actually
requires fewer messages (2PD + PDRS compared with
P + PD + PDRS). However, this requires a more com-
plex mechanism, shifts the responsibility for a crucial in-
frastructure task onto the requesters (which is not practical
in an open system), and assumes that implicit pings com-
pletely eliminate pinging of live agents and that requester
agents need to be informed of departed providers15. Fur-
ther, even in the best case, the savings by having requester
agents monitor provider liveness are not significant. There-
fore, we recommend that monitoring of provider liveness be
done by the Subscription Manager.

Due to space limitations we are unable to provide a full
interface specification of the Subscription manager, but it
should be evident from the above discussion.

5. Conclusion

We presented a new type of middle-agent, the Subscrip-
tion Manager, and motivated its use in systems that involve
ongoing information provision to requesters. An analysis of
different design options for the Subscription Manager was
presented, leading to recommendations for the design of
Subscription Managers.

Areas for future work include investigating ways of
structuring a network of middle-agents, carrying out exper-
imental work, and looking at how often agents should be
‘pinged’ given a particular rate of agent departure.

Acknowledgements

We would like to acknowledge the support of the Aus-
tralian Research Council, the Australian Bureau of Meteo-
rology and Agent Oriented Software Pty. Ltd. under grant
LP0347925, as well as support from the Dept. of Science,
Education and Training under IAP grant CG040014. Part of
this work is also done in collaboration with EU Project Sa-
tine.

15 If requesters are not required to be informed of departed providers,
then having middle-agents monitor providers requires fewer messages
(P + PD) and in this case having requesters monitor is more effi-
cient if PD(1 + RS) < P .

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-
vices: Concepts, Architectures and Applications. Springer-
Verlag, Berlin, Germany, 2004.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design of
a scalable event notification service: Interface and architec-
ture. Technical Report CU-CS-863-98, University of Col-
orado, Department of Computer Science, 1998.

[3] A. Cassandra, D. Chandrasekara, and M. Nodine.
Capability-based agent matchmaking. In AGENTS ’00: Pro-
ceedings of the fourth international conference on Au-
tonomous agents, pages 201–202. ACM Press, 2000.

[4] K. Decker, K. Sycara, and M. Williamson. Middle-agents for
the internet. In Fifteenth International Joint Conference on
Artificial Intelligence, pages 578–583. Morgan Kaufmann,
August 1997.

[5] K. Decker, M. Williamson, and K. Sycara. Matchmaking and
brokering. In 2nd International Conference on Multi-Agent
Systems (ICMAS 1996). MIT Press, 1996.

[6] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as
an agent communication language. In CIKM ’94: Proceed-
ings of the third international conference on Information and
knowledge management, pages 456–463. ACM Press, 1994.

[7] G. Fox and S. Pallickara. The Narada event brokering sys-
tem: Overview and extensions. In Proceedings of the 2002
International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’02)., pages
353–359, 2002.

[8] N. Gibbins and W. Hall. Scalability issues for query routing
service discovery. In Proceedings of the 2nd International
Workshop on Infrastructure for Agents, MAS, and Scalable
MAS, pages 209–217, 2001.

[9] I. Mathieson, S. Dance, L. Padgham, M. Gorman, and
M. Winikoff. An open meteorological alerting system: Is-
sues and solutions. In V. Estivill-Castro, editor, Proceed-
ings of the 27th Australasian Computer Science Conference,
pages 351–358, Dunedin, New Zealand, 2004.

[10] M. Paolucci, J. Soudry, N. Srinivasan, and K. Sycara. A bro-
ker for OWL-S web services. In First International Seman-
tic Web Services Symposium, 2004.

[11] C. Schmidt and M. Parashar. A peer-to-peer approach to web
service discovery. World Wide Web Journal, 7(2):211–229,
2004.

[12] K. Sycara. Multi-agent infrastructure, agent discovery, mid-
dle agents for web services and interoperation. In Multi-
Agent Systems and Applications, LNAI 2086, pages 17–49.
Springer-Verlag, 2001.

[13] K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dy-
namic matchmaking among heterogeneous software agents
in cyberspace. Autonomous Agents and Multi-Agent Systems,
5(2):173–203, 2002.

[14] H. C. Wong and K. Sycara. A taxonomy of middle-agents
for the internet. In 4th International Conference on Multi-
Agent Systems (ICMAS 2000), pages 465–466. IEEE Press,
2000.

8




