Skip to main content

Treewidth: Characterizations, Applications, and Computations

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4271))

Included in the following conference series:

  • 1033 Accesses

Abstract

This paper gives a short survey on algorithmic aspects of the treewidth of graphs. Some alternative characterizations and some applications of the notion are given. The paper also discusses algorithms to compute the treewidth of given graphs, and how these are based on the different characterizations, with an emphasis on algorithms that have been experimentally tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alber, J., Dorn, F., Niedermeier, R.: Experimental evaluation of a tree decomposition based algorithm for vertex cover on planar graphs. Disc. Appl. Math. 145, 210–219 (2005)

    Article  MathSciNet  Google Scholar 

  2. Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pp. 7–15 (2001)

    Google Scholar 

  3. Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability – A survey. BIT 25, 2–23 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12, 308–340 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees. SIAM J. Alg. Disc. Meth. 7, 305–314 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  7. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Disc. Appl. Math. 23, 11–24 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bachoore, E.H., Bodlaender, H.L.: New upper bound heuristics for treewidth. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 216–227. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Bachoore, E.H., Bodlaender, H.L.: A branch and bound algorithm for exact, upper, and lower bounds on treewidth. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 255–266. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Becker, A., Geiger, D.: A sufficiently fast algorithm for finding close to optimal clique trees. Artificial Intelligence 125, 3–17 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berry, A., Blair, J.R.S., Heggernes, P.: Maximum cardinality search for computing minimal triangulations. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 1–12. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Blair, J.R.S., Heggernes, P., Telle, J.: A practical algorithm for making filled graphs minimal. Theor. Comp. Sc. 250, 125–141 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)

    MATH  MathSciNet  Google Scholar 

  14. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc. 209, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On exact algorithms for treewidth. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 672–683. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Bodlaender, H.L., Grigoriev, A., Koster, A.M.C.A.: Treewidth lower bounds with brambles. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 391–402. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Bodlaender, H.L., Koster, A.M.C.A.: On the Maximum Cardinality Search lower bound for treewidth. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 81–92. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Disc. Math. 306, 337–350 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bodlaender, H.L., Koster, A.M.C.A., Eijkhof, F.v.d.: Pre-processing rules for triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305 (2005)

    Article  MathSciNet  Google Scholar 

  22. Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 628–639. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. Journal of Graph Algorithms and Applications 10, 5–49 (2006)

    MATH  MathSciNet  Google Scholar 

  24. Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM J. Disc. Math. 6, 181–188 (1993)

    Article  MATH  Google Scholar 

  25. Bollobás, B.: Modern Graph Theory. In: Graduate Texts in Mathematics. Springer, New York (1998)

    Google Scholar 

  26. Borie, R.B.: Recursively Constructed Graph Families. PhD thesis, School of Information and Computer Science, Georgia Institute of Technology (1988)

    Google Scholar 

  27. Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 555–581 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  29. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comp. Sc. 276, 17–32 (2002)

    Article  MATH  Google Scholar 

  30. Clautiaux, F., Carlier, J., Moukrim, A., Négre, S.: New lower and upper bounds for graph treewidth. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 70–80. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Clautiaux, F., Moukrim, A., Négre, S., Carlier, J.: Heuristic and meta-heuristic methods for computing graph treewidth. RAIRO Operations Research 38, 13–26 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  32. Cook, W., Seymour, P.D.: Tour merging via branch-decomposition. INFORMS J. on Computing 15(3), 233–248 (2003)

    Article  MathSciNet  Google Scholar 

  33. Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  34. Dohmen, K., Pönitz, A., Tittmann, P.: A new two-variable generalization of the chromatic polynomial. Disc. Math. and Theor. Comp. Sc. 6, 69–90 (2004)

    Google Scholar 

  35. Eijkhof, F.v.d., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for weighted treewidth. Algorithmica (to appear)

    Google Scholar 

  36. Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  37. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Series B 16, 47–56 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  38. Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence UAI 2004, Arlington, Virginia, USA, pp. 201–208. AUAI Press (2004)

    Google Scholar 

  39. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  40. Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 50–59. Springer, Heidelberg (1993)

    Google Scholar 

  41. Kirchhoff, G.: Über die Auflösung der Gleichugen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 71, 497–508 (1847)

    Article  Google Scholar 

  42. Koster, A.M.C.A.: Frequency Assignment - Models and Algorithms. PhD thesis, Univ. Maastricht, Maastricht, The Netherlands (1999)

    Google Scholar 

  43. Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational experiments. In: Broersma, H., Faigle, U., Hurink, J., Pickl, S. (eds.) Electronic Notes in Discrete Mathematics, vol. 8, pp. 54–57. Elsevier Science Publishers, Amsterdam (2001)

    Google Scholar 

  44. Koster, A.M.C.A., Marchal, B., van Hoesel, C.P.M.: Local search algorithms for treewidth. Work in progress (2006)

    Google Scholar 

  45. Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving partial constraint satisfaction problems with tree decomposition. Networks 40(3), 170–180 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  46. Koster, A.M.C.A., Wolle, T., Bodlaender, H.L.: Degree-based treewidth lower bounds. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 101–112. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  47. Lauritzen, S.J., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. The Journal of the Royal Statistical Society. Series B (Methodological) 50, 157–224 (1988)

    MATH  MathSciNet  Google Scholar 

  48. Lautemann, C.: Decomposition trees: structured graph representation and efficient algorithms. In: Dauchet, M., Nivat, M. (eds.) CAAP 1988. LNCS, vol. 299, pp. 28–39. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  49. Lengauer, T., Wanke, E.: Efficient analysis of graph properties on context-free graph languages. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 379–393. Springer, Heidelberg (1988)

    Google Scholar 

  50. Lucena, B.: A new lower bound for tree-width using maximum cardinality search. SIAM J. Disc. Math. 16, 345–353 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  51. Matoušek, J., Thomas, R.: Algorithms for finding tree-decompositions of graphs. J. Algorithms 12, 1–22 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  52. Ramachandramurthi, S.: A lower bound for treewidth and its consequences. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 14–25. Springer, Heidelberg (1995)

    Google Scholar 

  53. Ramachandramurthi, S.: The structure and number of obstructions to treewidth. SIAM J. Disc. Math. 10, 146–157 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  54. Reed, B.A.: Tree width and tangles, a new measure of connectivity and some applications. LMS Lecture Note Series, vol. 241, pp. 87–162. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  55. Reed, B.A.: Algorithmic aspects of tree width. In: CMS Books Math. / Ouvrages Math. SMC, vol. 11, pp. 85–107. Springer, New York (2003)

    Google Scholar 

  56. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  57. Röhrig, H.: Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut für Informatik, Saarbrücken, Germany (1998)

    Google Scholar 

  58. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  59. Seymour, P.D., Thomas, R.: Graph searching and a minimax theorem for tree-width. J. Comb. Theory Series B 58, 239–257 (1993)

    Article  MathSciNet  Google Scholar 

  60. Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulations. In: Proc. National Conference on Artificial Intelligence (AAAI 1997), pp. 185–190. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  61. Sysło, M.M.: NP-complete problems on some tree-structured graphs: A review. In: Nagl, M., Perl, J. (eds.) Proc. WG 1983 International Workshop on Graph Theoretic Concepts in Computer Science, Linz, West Germany, pp. 342–353. University Verlag Rudolf Trauner (1983)

    Google Scholar 

  62. Tarjan, R.E., Yannakakis, M.: Simple linear time algorithms to test chordiality of graphs, test acyclicity of graphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  63. Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Disc. Math. 10, 529–550 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  64. Wimer, T.V.: Linear Algorithms on k-Terminal Graphs. PhD thesis, Dept. of Computer Science, Clemson University (1987)

    Google Scholar 

  65. Wimer, T.V., Hedetniemi, S.T., Laskar, R.: A methodology for constructing linear graph algorithms. Congressus Numerantium 50, 43–60 (1985)

    MathSciNet  Google Scholar 

  66. Zhou, X., Fuse, K., Nishizeki, T.: A linear algorithm for finding [g,f]-colorings of partial k-trees. Algorithmica 27, 227–243 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodlaender, H.L. (2006). Treewidth: Characterizations, Applications, and Computations. In: Fomin, F.V. (eds) Graph-Theoretic Concepts in Computer Science. WG 2006. Lecture Notes in Computer Science, vol 4271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11917496_1

Download citation

  • DOI: https://doi.org/10.1007/11917496_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48381-6

  • Online ISBN: 978-3-540-48382-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics