Abstract
This paper gives a short survey on algorithmic aspects of the treewidth of graphs. Some alternative characterizations and some applications of the notion are given. The paper also discusses algorithms to compute the treewidth of given graphs, and how these are based on the different characterizations, with an emphasis on algorithms that have been experimentally tested.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alber, J., Dorn, F., Niedermeier, R.: Experimental evaluation of a tree decomposition based algorithm for vertex cover on planar graphs. Disc. Appl. Math. 145, 210–219 (2005)
Amir, E.: Efficient approximation for triangulation of minimum treewidth. In: Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pp. 7–15 (2001)
Arnborg, S.: Efficient algorithms for combinatorial problems on graphs with bounded decomposability – A survey. BIT 25, 2–23 (1985)
Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM J. Alg. Disc. Meth. 8, 277–284 (1987)
Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12, 308–340 (1991)
Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees. SIAM J. Alg. Disc. Meth. 7, 305–314 (1986)
Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Disc. Appl. Math. 23, 11–24 (1989)
Bachoore, E.H., Bodlaender, H.L.: New upper bound heuristics for treewidth. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 216–227. Springer, Heidelberg (2005)
Bachoore, E.H., Bodlaender, H.L.: A branch and bound algorithm for exact, upper, and lower bounds on treewidth. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 255–266. Springer, Heidelberg (2006)
Becker, A., Geiger, D.: A sufficiently fast algorithm for finding close to optimal clique trees. Artificial Intelligence 125, 3–17 (2001)
Berry, A., Blair, J.R.S., Heggernes, P.: Maximum cardinality search for computing minimal triangulations. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 1–12. Springer, Heidelberg (2002)
Blair, J.R.S., Heggernes, P., Telle, J.: A practical algorithm for making filled graphs minimal. Theor. Comp. Sc. 250, 125–141 (2001)
Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybernetica 11, 1–23 (1993)
Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)
Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comp. Sc. 209, 1–45 (1998)
Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer, Heidelberg (2005)
Bodlaender, H.L., Fomin, F.V., Koster, A.M.C.A., Kratsch, D., Thilikos, D.M.: On exact algorithms for treewidth. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 672–683. Springer, Heidelberg (2006)
Bodlaender, H.L., Grigoriev, A., Koster, A.M.C.A.: Treewidth lower bounds with brambles. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 391–402. Springer, Heidelberg (2005)
Bodlaender, H.L., Koster, A.M.C.A.: On the Maximum Cardinality Search lower bound for treewidth. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 81–92. Springer, Heidelberg (2004)
Bodlaender, H.L., Koster, A.M.C.A.: Safe separators for treewidth. Disc. Math. 306, 337–350 (2006)
Bodlaender, H.L., Koster, A.M.C.A., Eijkhof, F.v.d.: Pre-processing rules for triangulation of probabilistic networks. Computational Intelligence 21(3), 286–305 (2005)
Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 628–639. Springer, Heidelberg (2004)
Bodlaender, H.L., Koster, A.M.C.A., Wolle, T.: Contraction and treewidth lower bounds. Journal of Graph Algorithms and Applications 10, 5–49 (2006)
Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM J. Disc. Math. 6, 181–188 (1993)
Bollobás, B.: Modern Graph Theory. In: Graduate Texts in Mathematics. Springer, New York (1998)
Borie, R.B.: Recursively Constructed Graph Families. PhD thesis, School of Information and Computer Science, Georgia Institute of Technology (1988)
Borie, R.B., Parker, R.G., Tovey, C.A.: Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families. Algorithmica 7, 555–581 (1992)
Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM J. Comput. 31, 212–232 (2001)
Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theor. Comp. Sc. 276, 17–32 (2002)
Clautiaux, F., Carlier, J., Moukrim, A., Négre, S.: New lower and upper bounds for graph treewidth. In: Jansen, K., Margraf, M., Mastrolli, M., Rolim, J.D.P. (eds.) WEA 2003. LNCS, vol. 2647, pp. 70–80. Springer, Heidelberg (2003)
Clautiaux, F., Moukrim, A., Négre, S., Carlier, J.: Heuristic and meta-heuristic methods for computing graph treewidth. RAIRO Operations Research 38, 13–26 (2004)
Cook, W., Seymour, P.D.: Tour merging via branch-decomposition. INFORMS J. on Computing 15(3), 233–248 (2003)
Courcelle, B.: The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation 85, 12–75 (1990)
Dohmen, K., Pönitz, A., Tittmann, P.: A new two-variable generalization of the chromatic polynomial. Disc. Math. and Theor. Comp. Sc. 6, 69–90 (2004)
Eijkhof, F.v.d., Bodlaender, H.L., Koster, A.M.C.A.: Safe reduction rules for weighted treewidth. Algorithmica (to appear)
Fomin, F.V., Kratsch, D., Todinca, I.: Exact (exponential) algorithms for treewidth and minimum fill-in. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 568–580. Springer, Heidelberg (2004)
Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Comb. Theory Series B 16, 47–56 (1974)
Gogate, V., Dechter, R.: A complete anytime algorithm for treewidth. In: Proceedings of the 20th Annual Conference on Uncertainty in Artificial Intelligence UAI 2004, Arlington, Virginia, USA, pp. 201–208. AUAI Press (2004)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 50–59. Springer, Heidelberg (1993)
Kirchhoff, G.: Über die Auflösung der Gleichugen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 71, 497–508 (1847)
Koster, A.M.C.A.: Frequency Assignment - Models and Algorithms. PhD thesis, Univ. Maastricht, Maastricht, The Netherlands (1999)
Koster, A.M.C.A., Bodlaender, H.L., van Hoesel, S.P.M.: Treewidth: Computational experiments. In: Broersma, H., Faigle, U., Hurink, J., Pickl, S. (eds.) Electronic Notes in Discrete Mathematics, vol. 8, pp. 54–57. Elsevier Science Publishers, Amsterdam (2001)
Koster, A.M.C.A., Marchal, B., van Hoesel, C.P.M.: Local search algorithms for treewidth. Work in progress (2006)
Koster, A.M.C.A., van Hoesel, S.P.M., Kolen, A.W.J.: Solving partial constraint satisfaction problems with tree decomposition. Networks 40(3), 170–180 (2002)
Koster, A.M.C.A., Wolle, T., Bodlaender, H.L.: Degree-based treewidth lower bounds. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 101–112. Springer, Heidelberg (2005)
Lauritzen, S.J., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. The Journal of the Royal Statistical Society. Series B (Methodological) 50, 157–224 (1988)
Lautemann, C.: Decomposition trees: structured graph representation and efficient algorithms. In: Dauchet, M., Nivat, M. (eds.) CAAP 1988. LNCS, vol. 299, pp. 28–39. Springer, Heidelberg (1988)
Lengauer, T., Wanke, E.: Efficient analysis of graph properties on context-free graph languages. In: Lepistö, T., Salomaa, A. (eds.) ICALP 1988. LNCS, vol. 317, pp. 379–393. Springer, Heidelberg (1988)
Lucena, B.: A new lower bound for tree-width using maximum cardinality search. SIAM J. Disc. Math. 16, 345–353 (2003)
Matoušek, J., Thomas, R.: Algorithms for finding tree-decompositions of graphs. J. Algorithms 12, 1–22 (1991)
Ramachandramurthi, S.: A lower bound for treewidth and its consequences. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 14–25. Springer, Heidelberg (1995)
Ramachandramurthi, S.: The structure and number of obstructions to treewidth. SIAM J. Disc. Math. 10, 146–157 (1997)
Reed, B.A.: Tree width and tangles, a new measure of connectivity and some applications. LMS Lecture Note Series, vol. 241, pp. 87–162. Cambridge University Press, Cambridge (1997)
Reed, B.A.: Algorithmic aspects of tree width. In: CMS Books Math. / Ouvrages Math. SMC, vol. 11, pp. 85–107. Springer, New York (2003)
Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7, 309–322 (1986)
Röhrig, H.: Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut für Informatik, Saarbrücken, Germany (1998)
Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)
Seymour, P.D., Thomas, R.: Graph searching and a minimax theorem for tree-width. J. Comb. Theory Series B 58, 239–257 (1993)
Shoikhet, K., Geiger, D.: A practical algorithm for finding optimal triangulations. In: Proc. National Conference on Artificial Intelligence (AAAI 1997), pp. 185–190. Morgan Kaufmann, San Francisco (1997)
Sysło, M.M.: NP-complete problems on some tree-structured graphs: A review. In: Nagl, M., Perl, J. (eds.) Proc. WG 1983 International Workshop on Graph Theoretic Concepts in Computer Science, Linz, West Germany, pp. 342–353. University Verlag Rudolf Trauner (1983)
Tarjan, R.E., Yannakakis, M.: Simple linear time algorithms to test chordiality of graphs, test acyclicity of graphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579 (1984)
Telle, J.A., Proskurowski, A.: Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Disc. Math. 10, 529–550 (1997)
Wimer, T.V.: Linear Algorithms on k-Terminal Graphs. PhD thesis, Dept. of Computer Science, Clemson University (1987)
Wimer, T.V., Hedetniemi, S.T., Laskar, R.: A methodology for constructing linear graph algorithms. Congressus Numerantium 50, 43–60 (1985)
Zhou, X., Fuse, K., Nishizeki, T.: A linear algorithm for finding [g,f]-colorings of partial k-trees. Algorithmica 27, 227–243 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bodlaender, H.L. (2006). Treewidth: Characterizations, Applications, and Computations. In: Fomin, F.V. (eds) Graph-Theoretic Concepts in Computer Science. WG 2006. Lecture Notes in Computer Science, vol 4271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11917496_1
Download citation
DOI: https://doi.org/10.1007/11917496_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48381-6
Online ISBN: 978-3-540-48382-3
eBook Packages: Computer ScienceComputer Science (R0)