Abstract
We prove that in the List version, the problem of deciding the existence of a locally injective homomorphism to a parameter graph H performs a full dichotomy. Namely we show that it is polynomially time solvable if every connected component of H has at most one cycle and NP-complete otherwise.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th ACM Symposium on Theory of Computing, pp. 82–93 (1980)
Biggs, N.: Constructing 5-arc transitive cubic graphs. Journal of London Mathematical Society II 26, 193–200 (1982)
Bodlaender, H.L.: The classification of coverings of processor networks. Journal of Parallel Distributed Computing 6, 166–182 (1989)
Bulatov, A.A., Jeavons, P., Krokhin, A.A.: Classifying the complexity of constraints using finite algebras. SIAM J. Comput. 34(3), 720–742 (2005)
Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discrete Math. 16(3), 449–478 (2003)
Feder, T., Vardi, M.Y.: The computational structure of momotone monadic SNP and constraint satisfaction: A sudy through datalog and group theory. SIAM Journal of Computing 1, 57–104 (1998)
Fiala, J.: NP completeness of the edge precoloring extension problem on bipartite graphs. Journal of Graph Theory 43, 2, 156–160 (2003)
Fiala, J., Kratochvíl, J.: Complexity of partial covers of graphs. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 537–549. Springer, Heidelberg (2001)
Fiala, J., Kratochvíl, J.: Partial covers of graphs. Discussiones Mathematicae Graph Theory 22, 89–99 (2002)
Fiala, J., Kratochvíl, J., Pór, A.: On the computational complexity of partial covers of theta graphs. Electronic Notes in Discrete Mathematics 19, 79–85 (2005)
Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment problem. Theoretical Computer Science 1 349, 67–81 (2005)
Hell, P.: From homomorphisms to colorings and back. in Topics in Discrete Mathematics. In: Klazar, M., Kratochvíl, J., Matoušek, J., Loebl, M., Thomas, R., Valtr, P. (eds.) Topics in Discrete Mathematics, Dedicated to J. Nešetřil on the occasion of his 60th birthday, pp. 407–432. Springer, Heidelberg (2006)
Hell, P., Nešetřil, J.: On the complexity of H-colouring. Journal of Combinatorial Theory B 48, 92–110 (1990)
Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004)
Hliněný, P.: K 4,4− e has no finite planar cover. Journal of Graph Theory 21(1), 51–60 (1998)
Kratochvíl, J., Proskurowski, A., Telle, J.A.: Covering regular graphs. Journal of Combinatorial Theory B 71(1), 1–16 (1997)
Kristiansen, P., Telle, J.A.: Generalized H-Coloring of Graphs. In: Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 456–466. Springer, Heidelberg (2000)
Marx, D.: NP-completeness of list coloring and precoloring extension on the edges of planar graphs. Journal of Graph Theory 49(4), 313–324 (2005)
Schaefer, T.J.: The complexity of the satisfability problem. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM, New York (1978)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fiala, J., Kratochvíl, J. (2006). Locally Injective Graph Homomorphism: Lists Guarantee Dichotomy. In: Fomin, F.V. (eds) Graph-Theoretic Concepts in Computer Science. WG 2006. Lecture Notes in Computer Science, vol 4271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11917496_2
Download citation
DOI: https://doi.org/10.1007/11917496_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48381-6
Online ISBN: 978-3-540-48382-3
eBook Packages: Computer ScienceComputer Science (R0)