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Abstract. Given an arbitrary graph G = (V, E) and a proper interval
graph H = (V, F) with E C F we say that H is a proper interval comple-
tion of G. The graph H is called a minimal proper interval completion of
G if, for any sandwich graph H' = (V, F’) with E C F/ C F, H' is not a
proper interval graph. In this paper we give a O(n + m) time algorithm
computing a minimal proper interval completion of an arbitrary graph.
The output is a proper interval model of the completion.

1 Introduction

Various well-known graph parameters, like treecwidth, minimum fill-in, pathwidth
or bandwidth are defined in terms of graph embeddings. The general framework
consists in taking an arbitrary graph G = (V,E) and adding edges to G in
order to obtain a graph H = (V, E U E’) belonging to a specified class H. For
example, if H is chordal then it is called a triangulation of G. The treewidth can
be defined as min(w(H)) — 1, where the minimum is taken over all triangulations
of G (here w(H) denotes the maximum cliquesize of H). If instead of minimizing
the cliquesize of H we minimize |E’|, the number of added edges, we define the
minimum fill-in of G.

If H=(V,EUE') is an interval (resp. a proper interval) graph, we say that
H is an interval completion (resp. proper interval completion) of G. Recall that
an interval graph is a proper interval graph if it has an interval model such that
no interval is properly contained into another. The pathwidth of G can be defined
as min(w(H)) — 1, where the minimum is taken over all interval completions of
G. The minimum number of edges that we need to add for obtaining an interval
completion is called the profile of the graph.

Proper interval graph completions have been discussed in [11]. Independently,
Kaplan et al. [11] and Cai [3] show that the problem of computing the minimum
number of edges |E’| such that H = (V,E U E’) becomes a proper interval
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graph is fixed parameter tractable. The problem is adressed as the “proper in-
terval graph completion problem”, motivated by applications to genetics. The
bandwidth of a graph is usually expressed as follows. Consider an ordering (also
called layout) o = (v1,...,v,) of the vertices of G. The width of the layout is
max{|i — j| | v;,v; adjacent in G}. The bandwidth of G is the minimum width
over all layouts of G. It has been proved in [10] that the bandwidth of G is
also equal to min(w(H)) — 1, the minimum being taken over all proper interval
completions of G (see also Section 2 for the relationship between layouts and
proper interval completions). The bandwidth problem for graphs, motivated by
the bandwidth minimization problem for matrices, is one of the few graph prob-
lems NP-hard even for the class of trees [13]. Computing the bandwidth is also
Wt]-hard for all ¢, thus unlikely to be fixed parameter tractable.

For each of the parameters cited above, the problem of computing the pa-
rameter is NP-hard. Obviously, for all of them, the optimal solution can be found
among the minimal embeddings. We say that H = (V, EU E’) is a minimal tri-
angulation (minimal interval completion, minimal proper interval completion) if
no proper subgraph of H is a triangulation (interval completion, proper interval
completion) of G.

Computing minimal triangulations is a standard technique used in heuris-
tics for the treewidth or the minimum fill-in problem. The deep understanding
of minimal triangulations lead to many theoretical and practical results for the
treewidth and the minimum fill-in. We believe that, similarily, the study of other
types of minimal completions might bring new powerfull tools for the correspond-
ing problems.

Related work. Much research has been devoted to the minimal triangulation
problem. Rose, Tarjan and Lueker propose the first algorithm solving the prob-
lem in O(nm) time [16]. Several authors give different approaches for the same
problem, with the same running time. Only recently this O(nm) (in the worst
case O(n?)) time complexity has been improved by the algorithms of Kratsch
and Spinrad ([12], running in O(n?%?) time) and Heggernes, Telle and Villanger
([9], running in O(n*logn) time where O(n®) is the time needed for the mul-
tiplication of two n X n matrices). The later algorithm is the fastest up to now
for the minimal triangulation problem.

A first polynomial algorithm solving the minimal interval completion problem
has been given in [8]. Heggernes and Mancini [7] gave a linear time algorithm
for computing a minimal embedding into split graphs.

Our result. We study the minimal proper interval completion problem. Our
main result is a linear time algorithm computing a minimal proper interval
completion of an arbitrary graph. One of the main tools is a special ordering of
the proper interval graph, called bicompatible ordering [14]. Its role is similar
to the simplicial elimination schemes for chordal graph. We define a family of
orderings such that the associated proper interval graph is a minimal proper
interval completion. Eventually, we give a linear-time algorithm (based on a



BFS) computing such an ordering. The ordering can be efficiently transformed
into a proper interval model.

2 Definitions and basic results

Let G = (V,E) be a finite, undirected and simple graph. Moreover we only
consider connected graphs — in the disconnected case each connected component
can be treated separately. Denote n = |V|, m = |E|. If G = (V, E) is a subgraph
of G =(V',E') (i,e. VC V' and E C E’) we wrire G C G’. The neighborhood
of a vertex v in G is Ng(v) = {u | {u,v} € E}. Similarly, for a set A C V,
Nc(A) = Uyea Na(v) \ A. As usual, the subscript is sometimes omitted.

A graph G is an interval graph if continuous intervals can be assigned to each
vertex of G such that two vertices are neighbors if and only if their intervals
intersect. The family of intervals is called the interval model of the graph. A
graph G is interval if and only is has a clique path C'P, i.e. a path whose vertex
set is the set of all maximal cliques of G, such that for each vertex v of G,
the subgraph of C'P induced by the maximal cliques containing v is connected.
Taking this induced interval for each vertex of G yields an interval model. If an
interval graph G has an interval model where no interval is properly contained
in another, then the graph is called a proper interval graph.

Proper interval graphs can also be characterized as unit interval graphs (all
intervals have equal length) or claw-free interval graphs (interval graphs without
induced K7 3). See e.g. [4] for more details. For our purpose, we use their carac-
terisation in terms of bicompatible orderings. A perfect elimination ordering of
a graph G = (V, E) is an ordering ¢ = (v1,vs,...,v,) of V such that, for each
vertex v;, its neighbours appearing after v; in o induce a clique in the graph G.

Definition 1 ([14]). Let G = (V, E) be a graph and 0 = (v1,v2,...,v,) be an
ordering of its vertices. If both o and the reverse of o is a perfect elimination
ordering, then o is called bicompatible.

Theorem 1 ([14]). H is a proper interval graph if and only if there exists a
bicompatible ordering of its vertices.

The following statement can be considered as an equivalent definition for
bicompatible orderings. In our work we rather use this characterization.

Lemma 1 (Characterization of bicompatible orderings [14]). Let H =
(V,F) be a proper interval graph. Then o = (vi,v2...,v,) is a bicompatible
ordering of H if and only if {v;,v;} € F implies that {v;,v;} € F for alli,j,k,1,
1<i<j<k<l<n.

Definition 2. A tuple of disjoint subsets of V., P = (P,..., Py) whose union
is exactly V is called an ordered partition of V. A refinement of P is an ordered
partition P’ obtained by replacing each set P; by an ordered partition of P;. We
write P’ < P.



Definition 3. Given an ordered partition P = (Py,...,Py), any tuple P' =
(Pr,...,Pj), with 0 < j <k, is called a prefix of P. We use V(P') to denote
UiP |1 <i <j}.

In the particular case where P = (P;), we simply write P;. Moreover if P;
is formed by a single vertex x, we write x instead of {z}. Given two tuples
P = (P,...,Py), P = (Pgt1,...,Pry;) we write P’ @ P” to denote their
concatenation P = (Py,..., Py, Pet1,- -y Pryi)-

Let 0 = (v1,...,v,) be any ordering of V. Notice that an ordering is a special
case of an ordered partition.

Definition 4. Let G = (V, E) be an arbitrary graph and o = (vy,...,v,) be an
ordering of V.. The graph G(o) = (V, F) is defined by

F ={{vj, v} | there arei,l such that1 <i<j <k <Il<n and{v;,,vu} € E}.
Lemma 2. G(o) is a proper interval graph.
Proof. 1t is a direct consequence of Lemma 1 and Theorem 1. a

Remark 1. Let o = (v1,v2...,v,) be a bicompatible ordering of a proper interval
graph G = (V, E). Let (vi,,...,vy;), where [. is monotonically increasing, be the
list of vertices v; such that N(v;) \ N({v1,...,v—1}) # 0. Let v, be the last
neighbor of vy, in o, for 1 < ¢ < j. For each ¢,1 < ¢ < jlet K. = [v;, : v, ] be
the set of vertices appearing between v;, and v,, in o. The tuple (K, ..., K};)
forms a clique path of G(0).

Theorem 2. Let G = (V, E) be an arbitrary graph and H = (V, F) be a minimal
proper interval completion of G. Then there is an ordering o such that H = G(o).

Proof. By Theorem 1, there is an ordering o of V bicompatible for H. As
a straight consequence of Definition 4 and Lemma 1, E(G(o)) C E(H). By
Lemma 2, G(o) is also a proper interval graph. Thus, by minimality of H, we
deduce that E(G(0)) = E(H). O

Definition 5. An ordering o is called nice if G(o) is a minimal proper interval
completion of G. Any prefix of a nice ordering is also called nice.

3 Nice orderings and nice prefixes

3.1 Choosing a first vertex

A module is a set of vertices M such that for any z,y € M, N(z)\M = N(y)\M.
A clique module is a module inducing a clique. A minimal separator S is a set
of vertices such that there exist two connected components of G — S with vertex
sets C and D satisfying N(C) = N(D) = S.

Definition 6 ([1]). A moplex is a mazimal cligue module M such that N (M)
18 a minimal separator of G. A vertex v € M of G is called moplexian.



Proposition 1. Let M be a moplexr of G and v € M. There exist a nice or-
dering o starting with v such that the neighborhood of v in G(o) is exactly the
neighborhood of v in G. Moreover, for any minimal interval completion H' of G

such that Ng(v) = Ng/(v), there exists an ordering o', starting with v and such
that H' = G(o").

Proof. Let M be a moplex such that v € M (actually this moplex is unique)
and let H be the graph obtained from G by completing V' \ M into a clique. We
first show that H is a proper interval graph. Let S = N(M). By definition of a
moplex and by construction of H, the graph H is formed by two cliques, namely
MUS and V'\ M. Their intersection is exactly S. Clearly H is an interval graph.
Moreover it has no independent set of size greater that 2, in particular it has
no induced K 3. Hence H is interval and claw-free, so H is a proper interval
graph (see [4]). In particular there is a minimal proper interval completion of G
contained in H.

Consider any minimal proper interval completion H' of G such that Ng(v) =
Ny (v) (H' exists by the previous remark). By Theorem 1, there exists an order-
ing o’ such that H' = G(o’). If all vertices appearing before v in ¢’ are elements
of the module M, we can permute v and the first element of o’ without changing
the graph G(o’). Similarily, if all vertices appearing after v are in M, we reverse
o’ and then permute v and the first vertex. In both cases v becomes the first
vertex of o’.

It remains to consider the case when there are two vertices a,b ¢ M, such
that @ < v < b in ¢’. There is a path from a to b in G, such that all vertices of
the path are in V' '\ M. Consequently there are two consecutive vertices of the
path, say a’ and V', such that ' < v < b’ in the ordering ¢’. Thus {v,a’} and
{v,b'} are edges of H'. Since a’,b’ ¢ M, by construction of H' we must have
a’,b' € S. Recall that S is a minimal separator, thus there are two connected
components C and D of G — S such that N(C) = N(D) = S. At least one of
them, say C, is different from M. Let p be a path from o’ to b’ in G[CU{a’,V'}],
not using the edge {a’,b'}. Like above, there are two consecutive vertices o’ and
b" of p with a” < v < b” in 0. Hence v is adjacent in H’' to both a” and b"”. At
least one of a”,b” is in C, contradicting the fact that H' has no edges between
vand V\ (M UDS). O

A moplexian vertex always exists an can be found efficiently.

Theorem 3 ([1]). Every graph has a moplexian vertex. Such a vertex can be
found in O(n + m) time. More precisely, the algorithm LexBFS ends on a mo-
plexian vertex.

3.2 A family of nice orderings

Definition 7. Let p be a non-empty preficx of a vertex ordering. We denote
by First(p) the first vertex in p having a neighbor in V \ V(p). We define
the strong neighborhood (denoted Ns(p)), weak neighborhood (Nw(p)) and non-
neighborhood N(p) as follows:



— Ns(p) = N(First(p)) \ V(p),
= Nw(p) = N(V(p)) \ Ns(p),
= N(p) =V \ (V(p) UNs(p) UNw(p)).

Definition 8. We say that an ordering o respects a prefix p if o is a refinement

of pe (Ns(p), Nw(p),N(p)).

Our goal is to show that if p is a nice prefix starting with a moplexian
vertex, then there is a nice ordering respecting it. This is a first step towards
the extension of a nice prefix by adding a new vertex. Also note that a BFS
ordering respects all its prefixes. Actually our construction of a nice ordering
will be based on a BFS starting from a moplexian vertex.

Lemma 3. Let o and o’ be two orderings with a common prefiz p and such that
G(o') € G(o). Suppose that o is a refinement of pe(Ns(p), Nw(p)UN(p)). Then
o' is also a refinement of p e (Ns(p), Nw(p) UN(p)).

Proof. Assume that both sets Ng(p) and Ny (p) UN(p) are not empty, otherwise
the conclusion is true for any o’ starting with p. Let vy denote First(p).

By contradiction suppose that there are two vertices a € Ng(p) and b €
Nw (p) UN(p) such that v¢ < b < a in the ordering o’. Therefore {v¢,b} is an
edge of G(d’). If G(o) contained the edge {vy, b}, then there are two adjacent
vertices v' and o’ of G such that v’ < vy < b < d’ in the ordering ¢. By definition
of vy = First(p) we must have v = vy. Therefore a’ € Ng(p), contradicting the
fact that Ng(p) appears before b in o.

We conclude that the edge {vy, b} appears in G(¢’) but not in G(o). O

Lemma 4. Let o and o’ be two orderings with a common prefiz p and such that
G(0') C G(o). Assume that o respects p and let uw € Nw(p), w € N(p). Then u
appears before w in o’.

Proof. By contradiction, suppose that w appears before u in ¢’. Let ' € V(p) be
a neighbor of u. The edge {w, v’} is present in G(o”’), since w is between v’ and u
in o’. On the other hand, o respects p, so w appears after pe (Ns(p), Nw(p)). No
element of p is adjacent in G to a vertex appearing after w in 0. By construction
of G(o), this graph does not contain the edge {w,u'}. O

Lemmas 3 and 4 directly imply the following:

Proposition 2. Let o and o’ be two orderings with a common prefix p and such
that G(o') C G(o). If o respects p, then o’ also respects p.

Lemma 5. Let p be a non-empty prefic. Let u,w € Ng(p). Let o be an ordering
that respects p e u. Let o’ be an ordering, with p as a prefiz, in which w appears
before u. If there is w' € (N(w) NN(p)) \ (N(u) N N(p)), then the graph G(o')
contains an edge not appearing in G(o).



Proof. If w' is between First(p) and u in o', then by Definition 4 {u,w’'} is
present in G(o’). Else, u is between w and w’ in ¢’ and the same holds. On the
other hand, o respects p e u, so w’ appears after p e (u,Ng(p e u), Nyw(p e u)).
No element of p e u is adjacent in G to a vertex appearing after w’ in . By
Definition 4, {u,w’} is not an edge of G(0). O

Lemma 6. Let 0 = (vy,...,v,) be an ordering of V. Let o’ be obtained from o
by permuting vertices strictly between v;,v; in o. Then every edge in the sym-
metric difference E(G(0"))UE(G(0)) is incident to a vertex vj between v; and
Vg 1N O.

Proof. The proof is a straightforward consequence of the construction of G(o)
and G(¢"). O

3.3 Nice orderings : a sufficient condition

Our main combinatorial result is that nice orderings can be obtained from a BFS
ordering starting with a moplexian vertex, with an additional tie-break rule.

Theorem 4. Let G = (V, E) be a graph. Let 0 = (v1,...,v,) be an ordering of
V' such that vy is a moplexian vertex and for each 1 < i < n:

1. o respects p, where p = (vi,...,vi-1),
2. v; 1s such that N(v;) N N(p) is inclusion-minimal over all vertices in Ng(p).

Then o is a mice ordering.

Proof. Supppose that o is not a nice ordering and let ¢’ be an ordering such that
G(0’) is a strict subgraph of G(o). Take ¢’ in order to maximize the common
prefix of ¢ and o’. Let p = (v1,...,v,) be this maximum common prefix. By
construction of o, all the edges of G(o) incident to vy are also edges of G. By
Proposition 1, ¢’ starts with v. Consequently p has at least one vertex.

Let u = vp11 be the vertex of index p+ 1 in o and w be the vertex of index
p+1ino’.

By Proposition 2, ¢’ respects p.

Let ¢” be the ordering obtained from ¢’ by exchanging u and w. We claim
that G(¢”) = G(o’). By Lemma 6, any edge that might differ from G(¢”) to
G(0’) is adjacent to a vertex between u and w, let I denote this interval. Since o
and o’ respect p, we have that u, w € Ng(p), hence I C Ng(p). As a consequence
of Lemma 5 and by the condition 2 of the theorem, N(x) N N(p) = N(u) N N(p)
for every z € I. Let z be the last vertex of o’ contained in N (u) N N(p), if such
a vertex exists. In particular z is also the last vertex of o in N(u) N N(p).

Consider any y € V(I). Both in G(¢’) and G(¢”), y is adjacent to all vertices
of V(p) appearing after First(p) and has no neighbor appearing strictly before
First(p). Since y € Ns(p), the vertices of N(p) adjacent to y in G(o”) are precisely
the ones appearing before z — or this neighborhood is empty if z does not exist.
The same holds for G(¢”). Eventually, Ns(p) U Nw(p) induces a clique both in



Function IntervalModel

Input: o = (v1,...,vn) - a BFS ordering of a simple connected graph G;
Output: an interval model of the graph G(o);
Data structures:

r is the biggest index of a neighbor of a vertex considered so far.

¢ is a counter for numbering the maximal cliques of G(o).

(v, o], 1 < ¢ < jare maximal cliques of G(0). (see Remark 1)

v, Ur,, 1 < ¢ < j are marks on the leftmost

and rightmost vertices of the maximal clique c.
Q is a queue containing the numbers of maximal cliques
that the current vertex belongs to.

begin
r:=1
c:=1

for i:=1to ndo
if max{q|vq € Na(v;)} > r then
r:=max{q | vq € Na(v)}
mark v; as vy,
mark v, as vr,
increment ¢
for i:=1to ndo
if v; is marked as v;, then
add c at the end of the queue @
assign to v; the interval [First(Q) : Last(Q)]
if wv; is marked as v,, then
remove ¢ from the beginning of the queue @
im := the interval model
FixIntervalModel(o, im)
end

Fig. 1. Algorithm Interval Model

G(0’) and G(0”). Indeed the last vertex b of Ng(p) U Nw(p) in o’ (resp. o”) is
adjacent in G to some vertex a of p. Since ¢’ and ¢’ respect p, all the vertices of
Ng(p) U Nw(p) are in between a and b, so they form a clique. That proves that
G(o') = G(d").

We have proved that ¢’ and o have p e u as common prefix, and G(c”)

-
G(o). This contradicts the choice of ¢”. O

4 The algorithm

The algorithm is based on a BFS, see Figure 2. It creates an ordering o of
the vertices like in Theorem 4 and then returns a proper minimal model of the
minimal proper interval completion G(o).
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Algorithm MinimalProperIntervalCompletion

Input: a simple graph G = (V, E);
Output: the proper interval model of a minimal proper interval completion of G}
Data structures:
mark: each vertex is marked white (unprocessed), grey (being processed)
or black (processed).
Q is the queue of processed vertices.
p is the current prefix (an ordering on the black vertices).
dx(v) is the number of white neighbours of the vertex v.
Function ChooseNextVertex : chooses a vertex v in the queue Q
such that v € Ns(p) and dy(v) is minimum for this property.
Function IntervalModel : computes the interval model.
begin
compute a moplexian vertex v1 and put p := (v1)
mark all vertices as white, mark v; as black
init @ with the neighbours of v in G and mark these vertices as grey
compute dy(z) for all vertices
for i :=2 ton do
v; := ChooseNextVertex()
mark v; as black, p:=pewv;
compute the set N; of white neighbours of v;
mark the elements of N; as grey and add them to Q
for each y € N; for each z € N(y) do dg(z) := dx(z) — 1
IntervalModel(p)
end

Fig. 2. Algorithm Minimal Proper Interval Completion and data structure



Theorem 5. There is a linear time algorithm that, given an arbitrary graph G,
computes a proper interval model of a minimal proper interval completion of G.

Proof. The ordering produced by the algorithm respects the conditions of The-
orem 4. Indeed, it is sufficient to notice that the function ChooseNext Vertex
chooses a vertex in Ng(p) for the current prefix p, and moreover this vertex v is
of minimum dg(v). Since dg(v) is the cardinality of N(v) N N(p), the latter is
inclusion-minimal among all the elements of Ng(p).

Let us discuss a linear time implementation of the algorithm. The choice of
the first vertex can be done in linear time by Proposition 1. The main difficulty
is that the function ChooseNextVertex must work in constant time. For this
purpose, the queue @) will actually be a queue of sets (N;,, Nj,,..., Nj, ), where
Nj, is the set of neighbours of v;, added to the queue when processing v;, (empty
sets are not enqued). Hence Ng(p) is the first set in the queue, and vertices are
dequed from it.

In order to choose the vertex v € Ng(p) = N;, of minimum dg(v) in constant
time, we need to sort Ng(p) by increasing dy(). Notice that the value of some
dx (%) might change during the algorithm, and we whish to update the value
in constant time. We use a bucket sort with a special data structure (see [5, 6]
for a detailed description of the data structure, the authors use it for partition
refinement algorithms). The buckets are kept as a doubly chained list (instead
of the usual array). Each bucket has its value (the dg(u) for the elements of the
bucket), and points towards the previous and next non-empty buckets, according
to their values. The vertices of a bucket are kept in a doubly chained list, and
each vertex points towards the bucket to which it belongs. An example is given
in Figure 2, where the bucket of value 1 contains aq,bg,b; and the bucket 4
contains by.

When a set N; becomes the first set of @), we apply a classical bucket sort
on the vertices of N;. This sort costs O(|N;| + max{dg(u) | v € N;}). Then
we construct our data structure for the buckets, within the same running time.
During the whole algorithm, this initialization of the buckets costs O(n + m),
due to the fact that the sets IN; are pairwise disjoint.

During the algorithm, we decrement the value dy(z) for some vertices z (see
the two last for loops). If z is in the set Ng(p), we must uptade the buckets in
constant time. Let B be the bucket containing z and B’ be the previous bucket
in the list of buckets. If the bucket B’ corresponds to the value dg(z) —1 (before
decrementing it), we simply move z from B to B’, and possibly remove B if
it becomes empty. Otherwise, B’ corresponds to a value strictly smaller than
dx(z) — 1, we create a new bucket B”, of value dy(z) — 1, and add it to the list
of buckets between B’ and B. Thanks to our data structure, this operation can
be done in linear time. Note that the total number of iterations of the two last
for loops is at most n + m. Indeed, each vertex y becomes grey exactly once,
thus each edge {y, z} is visited at most twice.

The function IntervalModel (see Figure 1) constructs a clique path of G(o)
like in Remark 1 and computes an interval model based on this clique path in
linear time. Unfortunately the interval model obtained from the clique path is



not directly a proper interval model, thus we have to mend it into a proper
one. This can be done by standard techniques, see also the full version of the
paper [15]. O

5 Conclusions and perspectives

We presented a polynomial time algorithm computing a minimal proper interval
completion of an arbitrary graph.

There are two very natural questions related to minimal proper interval com-
pletions that we leave open. The first would be to characterize all minimal proper
interval completions, for example by describing all the orderings o such that G(o)
is a minimal proper interval completion of G. We point out that our algorithm
cannot obtain any such ordering of the input graph. Indeed, if we consider the
graph Kj 4, our algorithm chooses a simplicial vertex and completes the rest
into a clique. A different minimal proper interval completion of the K 4 can
be obtained by adding a matching to the independent set. For this particular
example, we are able to construct all nice orderings, by a slightly different (and
slower) technique. Roughly speaking, we can use a minimal separator S to split
the graph into two parts (by partitioning the components of G — S in two). We
compute an ordering starting with the vertices of the minimal separator for one
of the parts, then reverse it and use it as prefix to order the second part. It is
tempting to ask whether this technique provides all possible nice completions.

The second question consists in exctracting a minimal proper interval com-
pletion from some non-minimal proper interval completion H of G. The naive
technique would consist in checking, for each edge e € E(H)\ E(G), it H—eis a
proper interval graph. Although this ideea works for minimal triangulations and
minimal split completions, in our case we have examples showing that it does
not always yield a minimal proper interval completion.
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