Abstract
Given an arbitrary graph G=(V,E) and a proper interval graph H=(V,F) with E ⊆ F we say that H is a proper interval completion of G. The graph H is called a minimal proper interval completion of G if, for any sandwich graph H′=(V,F′) with E ⊆ F′ ⊂ F, H′ is not a proper interval graph. In this paper we give a \({{\mathcal{O}}(n+m)}\) time algorithm computing a minimal proper interval completion of an arbitrary graph. The output is a proper interval model of the completion.
Partially supported by Programs Conicyt “Anillo en Redes” (I.R.) and Ecos-Conicyt (I.R., I.T).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berry, A., Bordat, J.P.: Separability Generalizes Dirac’s Theorem. Discrete Applied Mathematics 84(1-3), 43–53 (1998)
Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)
Cai, L.: Fixed-Parameter Tractability of Graph Modification Problems for Hereditary Properties. Information Processing Letters 58(4), 171–176 (1996)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)
Habib, M., Paul, C., Viennot, L.: Partition Refinement Techniques: An Interesting Algorithmic Tool Kit. International Journal of Foundations of Computer Science 10(2), 147–170 (1999)
Habib, M., McConnell, R.M., Paul, C., Viennot, L.: Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Computer Science 234(1-2), 59–84 (2000)
Heggernes, P., Mancini, F.: Minimal Split Completions of Graphs. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 592–604. Springer, Heidelberg (2006)
Heggernes, P., Suchan, K., Todinca, I., Villanger, Y.: Minimal Interval Completions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 403–414. Springer, Heidelberg (2005)
Heggernes, P., Telle, J.A., Villanger, Y.: Computing minimal triangulations in time O(n α log n) = o(n 2.376). In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms - SODA 2005, pp. 907–916. SIAM, Philadelphia (2005)
Kaplan, H., Shamir, R.: Pathwidth, Bandwidth, and Completion Problems to Proper Interval Graphs with Small Cliques. SIAM Journal on Computing 25(3), 540–561 (1996)
Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs. SIAM Journal on Computing 28(5), 1906–1922 (1999)
Kratsch, D., Spinrad, J.: Minimal fill in cO(n 2.69) time. Discrete Applied Mathematics (to appear)
Monien, B.: The bandwidth minimization problem for caterpillars with hair length 3 in NP-complete. SIAM Journal on Algebraic and Discrete Methods 7, 505–512 (1986)
Panda, B.S., Das, S.K.: A linear time recognition algorithm for proper interval graphs. Information Processing Letters 87(3), 153–161 (2003)
Rappaport, I., Suchan, K., Todinca, I.: Minimal proper interval completions. Technical Report RR-2006-02, LIFO - University of Orléans (2006), http://www.univ-orleans.fr/SCIENCES/LIFO/prodsci/rapports/RR2006.htm.en
Rose, D., Tarjan, R.E., Lueker, G.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 146–160 (1976)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rapaport, I., Suchan, K., Todinca, I. (2006). Minimal Proper Interval Completions. In: Fomin, F.V. (eds) Graph-Theoretic Concepts in Computer Science. WG 2006. Lecture Notes in Computer Science, vol 4271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11917496_20
Download citation
DOI: https://doi.org/10.1007/11917496_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48381-6
Online ISBN: 978-3-540-48382-3
eBook Packages: Computer ScienceComputer Science (R0)