Skip to main content

A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set in Graphs

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4271))

Included in the following conference series:

Abstract

A dominating set \(\mathcal{D}\) of a graph G=(V,E) is a subset of vertices such that every vertex in \(V \setminus \mathcal{D}\) has at least one neighbour in \(\mathcal{D}\). Moreover if \(\mathcal{D}\) is an independent set, i.e. no vertices in \(\mathcal{D}\) are pairwise adjacent, then \(\mathcal{D}\) is said to be an independent dominating set. Finding a minimum independent dominating set in a graph is an NP-hard problem. We give an algorithm computing a minimum independent dominating set of a graph on n vertices in time O(1.3575n). Furthermore, we show that Ω(1.3247n) is a lower bound on the worst-case running time of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Broersma, H., Kloks, T., Kratsch, D., Müller, H.: Independent sets in Asteroidal Triple-free graphs. SIAM J. Discrete Math. 12, 276–287 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chang, M.-S.: Efficient algorithms for the domination problems on interval and circular-arc graphs. SIAM J. Comput. 27, 1671–1694 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Corneil, D.-G., Perl, Y.: Clustering and domination in perfect graphs. Discrete Appl. Math. 9, 27–39 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Farber, M.: Independent domination in chordal graphs. Operation Research Letters 1, 134–138 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and Conquer: A Simple O(20.288n) Independent Set Algorithm. In: Proceedings of SODA 2006, pp. 18–25 (2006)

    Google Scholar 

  6. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination - A case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Fomin, F.V., Grandoni, F., Kratsch, D.: Some new techniques in design and analysis of exact (exponential) algorithms. Bulletin of the EATCS 87, 47–77 (2005)

    MATH  MathSciNet  Google Scholar 

  8. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Grandoni, F.: A note on the complexity of minimum dominating set. Discrete Algorithms 4, 209–214 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Halldórsson, M.M.: Approximating the Minimum Maximal Independence Number. Inf. Process. Lett. 46, 169–172 (1993)

    Article  MATH  Google Scholar 

  11. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett 27, 119–123 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kratsch, D., Stewart, L.: Domination on Cocomparability Graphs. SIAM J. Discrete Math. 6, 400–417 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  13. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  14. Randerath, B., Schiermeyer, I.: Exact algorithms for Minimum Dominating Set, Technical Report zaik-469, Zentrum fur Angewandte Informatik, Köln, Germany (April 2004)

    Google Scholar 

  15. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–440 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Robson, J.M.: Finding a maximum independent set in time O(2n/4), Technical Report 1251-01, LaBRI, Université Bordeaux I (2001)

    Google Scholar 

  17. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J. Comput. 6, 537–546 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaspers, S., Liedloff, M. (2006). A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set in Graphs. In: Fomin, F.V. (eds) Graph-Theoretic Concepts in Computer Science. WG 2006. Lecture Notes in Computer Science, vol 4271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11917496_8

Download citation

  • DOI: https://doi.org/10.1007/11917496_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48381-6

  • Online ISBN: 978-3-540-48382-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics