Abstract
We show an O(1.344n)=O(20.427 n) algorithm for edge-coloring an n-vertex graph using three colors. Our algorithm uses polynomial space. This improves over the previous, O(2n/2) algorithm of Beigel and Eppstein [1]. We extend a very natural approach of generating inclusion-maximal matchings of the graph. The time complexity of our algorithm is estimated using the “measure and conquer” technique.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54(2), 168–204 (2005)
Eppstein, D.: The traveling salesman problem for cubic graphs. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 307–318. Springer, Heidelberg (2003)
Eppstein, D.: Quasiconvex analysis of backtracking algorithms. In: Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 781–790 (2004)
Fomin, F.: Personal communication (2006)
Fomin, F., Grandoni, F., Kratsch, D.: Measure and conquer: Domination – a case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 191–203. Springer, Heidelberg (2005)
Fomin, F., Grandoni, F., Kratsch, D.: Measure and conquer: A simple O(20.288n) independent set algorithm. In: Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), pp. 18–25 (2006)
Fomin, F., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Information Processing Letters 97(5), 191–196 (2006)
Lawler, E.L.: A note on the complexity of the chromatic number problem. Information Processing Letters (5), 66–67 (1976)
Vizing, V.G.: On the estimate of the chromatic class of a p-graph. Diskret. Analiz 3, 25–30 (1964)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kowalik, Ł. (2006). Improved Edge-Coloring with Three Colors. In: Fomin, F.V. (eds) Graph-Theoretic Concepts in Computer Science. WG 2006. Lecture Notes in Computer Science, vol 4271. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11917496_9
Download citation
DOI: https://doi.org/10.1007/11917496_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48381-6
Online ISBN: 978-3-540-48382-3
eBook Packages: Computer ScienceComputer Science (R0)