Abstract
One fundamental step for image-related research is to obtain an accurate segmentation. Among the available techniques, the active contour algorithm has emerged as an efficient approach towards image segmentation. By progressively adjusting a reference curve using combination of external and internal force computed from the image, feature edges can be identified. The Gradient Vector Flow (GVF) is one efficient external force calculation for the active contour and a GPU-centric implementation of the algorithm is presented in this paper. Since the internal SIMD architecture of the GPU enables parallel computing, General Purpose GPU (GPGPU) based processing can be applied to improve the speed of the GVF active contour for large images. Results of our experiments show the potential of GPGPU in the area of image segmentation and the potential of the GPU as a powerful co-processor to traditional CPU computational tasks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1988)
Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Transaction on Image Proccessing 7, 359–369 (1998)
Kilgariff, E., Fernando, R.: The geforce 6 series gpu architecture. In: GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation, pp. 471–493 (2005)
Zimmer, C., Labruyere, E., Meas-Yedid, V., Guillen, N., Olivo-Marin, J.: Segmentation and tracking of migrating cells in videomicroscopy with parametric active contours: A tool for cell-based drug testing. IEEE Transaction. on Medical Imaging 21, 1212–1221 (2002)
Ding, F., Leow, W., Wang, S.: Segmentation of 3d ct volume images using a single 2d atlas. In: Liu, Y., Jiang, T., Zhang, C. (eds.) CVBIA 2005. LNCS, vol. 3765, pp. 459–468. Springer, Heidelberg (2005)
Vidholm, E., Nystrom, I.: Haptic volume rendering based on gradient vector flow. In: Proceedings of Swedish symposium on image analysis (SSBA 2005), pp. 97–100 (2005)
Rumpf, M., Strzodka, R.: Level set segmentation in graphics hardware. In: Proceedings of the 2001 International Conference on Image Processing, vol. 3, pp. 1103–1106 (2001)
Kondratieva, P., Krüger, J., Westermann, R.: The application of gpu particle tracing to diffusion tensor field visualization. In: Proceedings IEEE Visualization 2005 (Vis 2005) (2005)
Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: Gpu cluster for high performance computing. In: Proceedings of the 2004 ACM/IEEE conference on Supercomputing (SC 2004), p. 47 (2004)
Kipfer, P., Segal, M., Westermann, R.: Uberflow: a gpu-based particle engine. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (HWWS 2004), pp. 115–122 (2004)
Fatahalian, K., Sugerman, J., Hanrahan, P.: Understanding the efficiency of gpu algorithms for matrix-matrix multiplication. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (HWWS 2004), pp. 133–137 (2004)
Lefohn, A.E., Kniss, J.M., Hansen, C.D., Whitaker, R.T.: Interactive deformation and visualization of level set surfaces using graphics hardware. In: Proceedings of the 14th IEEE Visualization (VIS 2003), pp. 75–82 (2003)
Yang, R., Welch, G., Bishop, G.: Real-time consensus-based scene reconstruction using commodity graphics hardware. In: Proceedings of the 10th Pacific Conference on Computer Graphics and Applications (PG 2002), p. 225 (2002)
Galoppo, N., Govindaraju, N., Henson, M., Manocha, D.: Lu-gpu: Efficient algorithms for solving dense linear systems on graphics hardware. In: Gschwind, T., Aßmann, U., Nierstrasz, O. (eds.) SC 2005. LNCS, vol. 3628, pp. 3–3. Springer, Heidelberg (2005)
Lefohn, A.: Gpu memory model overview. In: Proceedings of the ACM Siggraph (2004)
Govindaraju, N., Raghuvanshi, N., Henson, M., Manocha, D.: A cache-efficient sorting algorithm for database and data mining computations using graphics processors. In: UNC Tech. Report (2005)
NVidia: The cg toolkit. In: NVidia Corp (2005), http://developer.nvidia.com/object/cg_toolkit.html
gpgpu.org: General-purpose computation on gpus (2005)
Microsoft: Hlsl shaders. Microsoft Inc (2004), http://msdn.microsoft.com
OpenGL: Opengl shading language (2005), http://www.opengl.org/documentation/oglsl.html.OpenGL.org
Xu, C., Prince, J.L.: Generalized gradient vector flow external forces for active contours. Signal Processing — An International Journal 71, 131–139 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
He, Z., Kuester, F. (2006). GPU-Based Active Contour Segmentation Using Gradient Vector Flow. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919476_20
Download citation
DOI: https://doi.org/10.1007/11919476_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48628-2
Online ISBN: 978-3-540-48631-2
eBook Packages: Computer ScienceComputer Science (R0)