Skip to main content

Automatic Learning of Articulated Skeletons from 3D Marker Trajectories

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4291))

Abstract

We present a novel fully-automatic approach for estimating an articulated skeleton of a moving subject and its motion from body marker trajectories that have been measured with an optical motion capture system. Our method does not require a priori information about the shape and proportions of the tracked subject, can be applied to arbitrary motion sequences, and renders dedicated initialization poses unnecessary. To serve this purpose, our algorithm first identifies individual rigid bodies by means of a variant of spectral clustering. Thereafter, it determines joint positions at each time step of motion through numerical optimization, reconstructs the skeleton topology, and finally enforces fixed bone length constraints. Through experiments, we demonstrate the robustness and efficiency of our algorithm and show that it outperforms related methods from the literature in terms of accuracy and speed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Builder, V.B.: http://www.vicon.com/products/bodybuilder.html

  2. Builder, M.A.S.: http://www.motionanalysis.com/

  3. Motion, S.: http://www.simi.com/

  4. Schwartz, M.H., Rozumalski, A.: A new method for estimating joint parameters from motion data. Journal of Biomechanics 38(1), 107–116 (2005)

    Google Scholar 

  5. Gamage, S.S.H.U., Lasenby, J.: New least squares solutions for estimating the average centre of rotation and the axis of rotation. Journal of Biomechanics 35(1), 87–93 (2002)

    Article  Google Scholar 

  6. Spiegelman, J.J., Woo, S.L.: A rigid-body method for finding centers of rotation and angular displacements of planar joint motion. Journal of Biomechanics 20(7), 715–721 (1987)

    Article  Google Scholar 

  7. Cameron, J., Lasenby, J.: A real-time sequential algorithm for human joint localization. In: Proc. SIGGRAPH 2005, Posters(111) (2005)

    Google Scholar 

  8. Ringer, M., Lasenby, J.: A procedure for automatically estimating model parameters in optical motion capture. In: BMVC (2002)

    Google Scholar 

  9. O’Brien, J.F., Bodenheimer, R., Brostow, G., Hodgins, J.K.: Automatic joint parameter estimation from magnetic motion capture data. In: Graphics Interface, pp. 53–60 (2000)

    Google Scholar 

  10. Silaghi, M.-C., Plänkers, R., Boulic, R., Fua, P., Thalmann, D.: Local and global skeleton fitting techniques for optical motion capture. In: Magnenat-Thalmann, N., Thalmann, D. (eds.) CAPTECH 1998. LNCS (LNAI), vol. 1537, pp. 26–40. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Kirk, A.G., O’Brien, J.F., Forsyth, D.A.: Skeletal parameter estimation from optical motion capture data. In: CVPR 2005, pp. 782–788 (2005)

    Google Scholar 

  12. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm (2001)

    Google Scholar 

  13. Duda, R.O., Hart, P.E.: Pattern Classification, 2nd edn. Wiley, New York, London, Sydney (2001)

    MATH  Google Scholar 

  14. Horn, B.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America 4(4), 629–642 (1987)

    Article  MathSciNet  Google Scholar 

  15. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proceedings of the American Mathematical Society 7, 48–50 (1956)

    Article  MathSciNet  Google Scholar 

  16. Database, C.G.L.M.C.: http://mocap.cs.cmu.edu/

  17. Byrd, R., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comp. 16, 1190–1208 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Aguiar, E., Theobalt, C., Seidel, HP. (2006). Automatic Learning of Articulated Skeletons from 3D Marker Trajectories. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919476_49

Download citation

  • DOI: https://doi.org/10.1007/11919476_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48628-2

  • Online ISBN: 978-3-540-48631-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics