Skip to main content

Recognizing Action Primitives in Complex Actions Using Hidden Markov Models

  • Conference paper
Advances in Visual Computing (ISVC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4291))

Included in the following conference series:

Abstract

There is biological evidence that human actions are composed out of action primitives, similarly to words and sentences being composed out of phonemes. Given a set of action primitives and an action composed out of these primitives we present a Hidden Markov Model-based approach that allows to recover the action primitives in that action. In our approach, the primitives may have different lengths, no clear “divider” between the primitives is necessary. The primitive detection is done online, no storing of past data is necessary. We verify our approach on a large database. Recognition rates are slightly smaller than the rate when recognizing the singular action primitives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Billard, A., Epars, Y., Calinon, S., Schaal, S., Cheng, G.: Discovering optimal imitation strategies. Robotics and Autonomous Systems 47, 69–77 (2004)

    Article  Google Scholar 

  2. Bobick, A.F.: Movements, Activity, and Action: The Role of Knowledge in the Perception of Motion. In: Royal Society Workshop on Knowledge-based Vision in Man and Machine, London, England (February 1997)

    Google Scholar 

  3. Bourlard, H., Morgan, N.: Connectionist Speech Recognition: a Hybrid Approach. Kluwer Press, Dordrecht (1994)

    Google Scholar 

  4. Calinon, S., Billard, A.: Stochastic gesture production and recognition model for a humanoid robot. In: Proc. IEEE Int. Conf. on Intelligent Robots and Systems, pp. 2769–2774. IROS 2005 (2005)

    Google Scholar 

  5. Calinon, S., Guenter, F., Billard, A.: Goal-directed imitation in a humanoid robot. In: Proc. IEEE Int. Conf. on Robotics and Automation, ICRA 2005 (2005)

    Google Scholar 

  6. Cuntoor, N., Chellappa, R.: Key frame-based activity representation using antieigenvalues. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 499–508. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Dariush, B.: Human motion analysis for biomechanics and biomedicine. Machine Vision and Applications 14, 202–205 (2003)

    Article  Google Scholar 

  8. Giese, M., Poggio, T.: Neural mechanisms for the recognition of biological movements. Nature Reviews 4, 179–192 (2003)

    Article  Google Scholar 

  9. Hermansky, H.: Perceptual linear predictive (plp) analysis of speech. Journal of Acoustical Society of America 87(4), 1725–1738 (1990)

    Article  Google Scholar 

  10. Huang, X.D., Ariki, Y., Jack, M.A.: Hidden Markov Models for Speech Recognition. Edinburgh University Press (1990)

    Google Scholar 

  11. Huang, X.D., Jack, M.A.: Semi-continous hidden markov models for speech signals. Computer Speech and Language 3, 239–252 (1989)

    Article  Google Scholar 

  12. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation withnonlinear dynamical systems in humanoid robots. In: Proc. IEEE Int. Conf. on Robotics and Automation, Washington (May 2002)

    Google Scholar 

  13. Ivanov, Y., Bobick, A.: Recognition of visual activities and interactions by stochastic parsing. IEEE Trans. Pattern Analysis and Machine Intelligence 22(8), 852–872 (2000)

    Article  Google Scholar 

  14. Jenkins, O.C., Mataric, M.: Deriving action and behavior primitives from human motion capture data. In: Proc. IEEE Int. Conf. on Robotics and Automation, Washington (May 2002)

    Google Scholar 

  15. Jenkins, O.C., Mataric, M.J.: Deriving action and behavior primitives from human motion data. In: Proc. IEEE Int. Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, September 30 – October 4, 2002, pp. 2551–2556 (2002)

    Google Scholar 

  16. Lu, C., Ferrier, N.: Repetitive motion analysis: Segmentation and event classification. IEEE Trans. Pattern Analysis and Machine Intelligence 26(2), 258–263 (2004)

    Article  Google Scholar 

  17. Nagel, H.-H.: From image sequences towards conceptual description. Image and Vision Computing 6(2), 59–74 (1988)

    Article  Google Scholar 

  18. Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE ASSP Magazine, 4–15 (January 1986)

    Google Scholar 

  19. Rao, C., Yilmaz, A., Shah, M.: View-Invariant Representation and Recognition of Actions. Journal of Computer Vision 50(2) (2002)

    Google Scholar 

  20. Reng, L., Moeslund, T., Granum, E.: Finding motion primitives in human body gestures. In: Gibet, S., Courty, N., Kamp, J.-F. (eds.) GW 2005. LNCS (LNAI), vol. 3881, pp. 133–144. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Reng, L., Moeslund, T.B., Granum, E.: Finding motion primitives in human body gestures. In: Gibet, S., Courty, N., Kamp, J.-F. (eds.) GW 2005. LNCS (LNAI), vol. 3881, pp. 133–144. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Rizzolatti, G., Fogassi, L., Gallese, V.: Parietal cortex: from sight to action. Current Opinion in Neurobiology 7, 562–567 (1997)

    Article  Google Scholar 

  23. Rizzolatti, G., Fogassi, L., Gallese, V.: Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews 2, 661–670 (2001)

    Article  Google Scholar 

  24. Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences 3(6), 233–242 (1999)

    Article  Google Scholar 

  25. Stolcke, A.: An efficient probabilistic context-free parsing algorithm that computes prefix probabilities. Computational Linguistics 21(2), 165–201 (1995)

    MathSciNet  Google Scholar 

  26. Vecchio, D.D., Murray, R.M., Perona, P.: Decomposition of Human Motiom into Dynamics-based Primitives with Application to Drawing Tasks. Automatica 39 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krüger, V. (2006). Recognizing Action Primitives in Complex Actions Using Hidden Markov Models. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919476_54

Download citation

  • DOI: https://doi.org/10.1007/11919476_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48628-2

  • Online ISBN: 978-3-540-48631-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics