Skip to main content

Self-Calibration with Two Views Using the Scale-Invariant Feature Transform

  • Conference paper
Advances in Visual Computing (ISVC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4291))

Included in the following conference series:

Abstract

In this paper, we present a self-calibration strategy to estimate camera intrinsic and extrinsic parameters using the scale-invariant feature transform (SIFT). The accuracy of the estimated parameters depends on how reliably a set of image correspondences is established. The SIFT employed in the self-calibration algorithms plays an important role in accurate estimation of camera parameters, because of its robustness to changes in viewing conditions. Under the assumption that the camera intrinsic parameters are constant, experimental results show that the SIFT-based approach using two images yields more competitive results than the existing Harris corner detector-based approach using two images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang., Z.: Flexible Camera Calibration by Viewing a Plane from Unknown Orientations. In: Proc. Int. Conf. Computer Vision, vol. 1, pp. 666–673. Kerkyra Corfu (1999)

    Google Scholar 

  2. Whitehead, A., Roth, G.: Estimating Intrinsic Camera Parameters from the Fundamental Matrix Using Evolutionary Algorithm. EURASIP J. Applied Signal Processing 8, 1113–1124 (2004)

    Article  Google Scholar 

  3. Lourakis, M.I.A., Deriche, R.: Camera Self-Calibration Using the Singular Value Decomposition of the Fundamental Matrix. In: Proc. Asian Conf. Computer Vision, Taipei Taiwan, vol. 1, pp. 403–408 (2000)

    Google Scholar 

  4. Hartley, R.I.: Estimation of Relative Camera Positions for Uncalibrated Cameras. In: Proc. European Conf. Computer Vision, Santa Margherita Ligure Italy, pp. 579–587 (1992)

    Google Scholar 

  5. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Computer Vision 62(2), 91–110 (2004)

    Article  Google Scholar 

  6. Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: Proc. Conf. Alvey Vision, Manchester, pp. 147–151 (1988)

    Google Scholar 

  7. Hartley, R.: In Defence of the Eight-Point Algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence 19(6), 580–593 (1997)

    Article  Google Scholar 

  8. Moreels, P., Perona, P.: Evaluation of Features Detectors and Descriptors Based on 3D Objects. In: Proc. Int. Conf. Computer Vision, Beijing, China, vol. 1, pp. 800–807 (2005)

    Google Scholar 

  9. Gordon, I., Lowe, D.G.: Scene Modeling, Recognition and Tracking with Invariant Image Features. In: Proc. Int. Sym. Mixed and Augmented Reality, Arlington VA USA, pp. 110–119 (2004)

    Google Scholar 

  10. Mendonça, P., Cipolla, P.: A Simple Technique for Self-Calibration. In: Proc. Int. Conf. Computer Vision, Kerkyra Greece, vol. 1, pp. 500–505 (1999)

    Google Scholar 

  11. Habed, A., Boufama, B.S.: Self-Calibration of a Simplified Camera Using Kruppa Equations. In: Proc. Canadian Conf. Computer and Robot Vision, London, Ontario, Canada, pp. 446–450 (2004)

    Google Scholar 

  12. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  13. Hartley, R.I., Sturm, P.: Triangulation. Int. J. Computer Vision 68(2), 146–157 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yun, JH., Park, RH. (2006). Self-Calibration with Two Views Using the Scale-Invariant Feature Transform. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919476_59

Download citation

  • DOI: https://doi.org/10.1007/11919476_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48628-2

  • Online ISBN: 978-3-540-48631-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics