Abstract
The presentation of Bézier surfaces affects the results of rendering and tessellating applications greatly. To achieve optimal parameterization, we present two reparameterization algorithms using linear Möbius transformations and quadratic transformations, respectively. The quadratic reparameterization algorithm can produce more satisfying results than the Möbius reparameterization algorithm with degree elevation cost. Examples are given to show the performance of our algorithms for rendering and tessellating applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Farouki, R.T.: Optimal parameterizations. Computer Aided Geometric Design 14(2), 153–168 (1997)
Jüttler, B.: A vegetarian approach to optimal parameterizations. Computer Aided Geometric Design 14(9), 887–890 (1997)
Costantini, P., Farouki, R.T., Manni, C., Sestini, A.: Computation of optimal composite re-parameterizations. Computer Aided Geometric Design 18(9), 875–897 (2001)
Yeh, S.-S., Hsu, P.-L.: The speed-controlled interpolator for machining parametric curves. Computer-Aided Design 31(5), 349–357 (1999)
Yang, D.C.H., Wang, F.C.: A quintic spline interpolator for motion command generation of computer-controlled machines. ASME J. Mech. Design 116, 226–231 (1994)
Yang, D.C.H., Kong, T.: Parametric interpolator versus linear interpolator for precision CNC machining. Computer-Aided Design 26(3), 225–234 (1994)
Wever, U.: Optimal parameterization for cubic spline. Computer-Aided Design 23(9), 641–644 (1991)
Wang, F.C., Yang, D.: Nearly arc-length parameterized quintic spline interpolation for precision machining. Computer-Aided Design 25(5), 281–288 (1993)
Wang, F.C., Wright, P.K., Barsky, B.A., Yang, D.C.H.: Approximately arc-length parameterized C 3 quintic interpolatory splines. ASME J. Mech. Design 121, 430–439 (1999)
Shpitalni, M., Koren, Y., Lo, C.C.: Realtime curve interpolators. Computer-Aided Design 26(11), 832–838 (1994)
Ong, B.H.: An extraction of almost arc-length parameterization from parametric curves. Ann. Numer. Math. 3, 305–316 (1996)
Piegl, L.A., Richard, A.M.: Tessellating trimmed NURBS surfaces. Computer-Aided Design 27(1), 15–26 (1995)
Ng, W.M.M., Tan, S.T.: Incremental tessellation of trimmed parametric surfaces. Computer-Aided Design 32(4), 279–294 (2000)
Hamann, B., Tsai, P.Y.: A tessellation algorithm for the representation of trimmed nurbs surfaces with arbitrary trimming curves. Computer-Aided Design 28(6/7), 461–472 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yang, YJ., Yong, JH., Zhang, H., Paul, JC., Sun, J. (2006). Optimal Parameterizations of Bézier Surfaces. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919476_67
Download citation
DOI: https://doi.org/10.1007/11919476_67
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48628-2
Online ISBN: 978-3-540-48631-2
eBook Packages: Computer ScienceComputer Science (R0)