Skip to main content

Markerless Pose Tracking for Augmented Reality

  • Conference paper
Advances in Visual Computing (ISVC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4291))

Included in the following conference series:

Abstract

In this paper a new approach is presented for markerless pose tracking in augmented reality. Using a tracking by detection approach, we estimate the 3D camera pose by detecting natural feature points in each input frame and building correspondences between 2D feature points. Instead of modeling the 3D environment, which is changing constantly and dynamically, we use a virtual square to define a 3D reference coordinate system. Camera pose can hence be estimated relative to it and the calculated 3D pose parameters can be used to render virtual objects into the real world. We propose and implement several strategies for robust matching, pose estimation and refinement. Experimental evaluation has shown that the approach is capable of online pose tracking and augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Szeliski, R., Kang, S.: Recovering 3D shape and motion from image streams using non–linear least squares. In: Technical Report CRL 93/3, Digital Equipment Corporation, Cambridge Research Laboratory (1993)

    Google Scholar 

  3. Guo, Y., Hsu, S., Samarasekera, S., Sawhney, H., Kumar, R.: Multi–view 3D analysis with applications for augmented reality and enhanced video visualization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2780–2781 (2000)

    Google Scholar 

  4. Cornelis, K., Pollefeys, M., Vergauwen, M., Gool, L.V.: Augmented reality using uncalibrated video sequences. In: Pollefeys, M., Van Gool, L., Zisserman, A., Fitzgibbon, A.W. (eds.) SMILE 2000. LNCS, vol. 2018, pp. 144–160. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Shi, J., Tomasi, C.: Good features to track. In: Conference on Computer Vision and Pattern Recognition, Seattle, USA, pp. 593–600 (1994)

    Google Scholar 

  6. Hager, G., Belhumeur, P.: Efficient region tracking with parametric models of geometry and illumination. IEEE Trans. Pattern Analysis and Machine Intelligence 20, 1025–1039 (1998)

    Article  Google Scholar 

  7. Jurie, F., Dhome, M.: Real time robust template matching. In: The 13th British Machine Vision Conference, Cardiff, UK, pp. 123–132 (2002)

    Google Scholar 

  8. Isard, M., Blake, A.: Condensation — conditional density propagation for visual tracking. Int. Journal of Computer Vision 29, 5–28 (1998)

    Article  Google Scholar 

  9. Jaynes, C., Hou, J.: Temporal registration using a kalman filter for augmented reality. In: Vision Interface, Montreal, Canada (2000)

    Google Scholar 

  10. Comaniciu, D., Ramesh, V., Meer, P.: Kernel–based object tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 25, 564–577 (2003)

    Article  Google Scholar 

  11. Claus, D., Fitzgibbon, A.W.: Reliable fiducial detection in natural scenes. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 469–480. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a video–based augmented reality conferencing system. In: The 2nd Int. Workshop on Augmented Reality, San Francisco, USA, pp. 85–94 (1999)

    Google Scholar 

  13. Fiala, M.: ARTAG, a fiducial marker system using digital techniques. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, pp. 590–596 (2005)

    Google Scholar 

  14. Harris, C., Stephens, M.: A combined corner and edge detector. In: The 4th Alvey Vision Conference, Manchester, pp. 189–192 (1988)

    Google Scholar 

  15. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: The 7th European Conference on Computer Vision, Copenhagen, Denmark, pp. 128–142 (2002)

    Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale–invariant keypoints. Int. Journal of Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  17. Ke, Y., Sukthankar, R.: PCA–SIFT: A more distinctive representation for local image descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition, Washington DC, USA, pp. 506–513 (2004)

    Google Scholar 

  18. Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real–time keypoint recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, pp. 775–781 (2005)

    Google Scholar 

  19. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Analysis and Machine Intelligence 27, 1625–1630 (2005)

    Article  Google Scholar 

  20. Skrypnyk, I., Lowe, D.: Scene modeling, recognition and tracking with invariant image features. In: Third IEEE and ACM International Symposium on Mixed and Augmented Reality, Arlington, VA, USA, pp. 110–119 (2004)

    Google Scholar 

  21. Bleser, G., Pastarmov, Y., Stricker, D.: Real–time 3D camera tracking for industrial augmented reality applications. In: The 13th Int. Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, Czech Republic (2005)

    Google Scholar 

  22. Lepetit, V., Vacchetti, L., Thalmann, D., Fua, P.: Fully automated and stable registration for augmented reality applications. In: Second Int. Symposium on Mixed and Augmented Reality, Tokyo, Japan, pp. 93–101 (2003)

    Google Scholar 

  23. Comport, A.I., Marchand, E., Pressigout, M., Chaumette, F.: Real–time markerless tracking for augmented reality: the virtual visual servoing framework. IEEE Trans. on Visualization and Computer Graphics 12, 615–628 (2006)

    Article  Google Scholar 

  24. Simon, G., Fitzgibbon, A., Zisserman, A.: Markerless tracking using planar structures in the scene. In: Int. Symposium on Augmented Reality, Munich, Germany, pp. 120–128 (2000)

    Google Scholar 

  25. Ferrari, V., Tuytelaars, T., Van Gool, L.: Markerless augmented reality with a real–time affine region tracker. In: International Symposium on Mixed and Augmented Reality, New York, USA, pp. 87–96 (2001)

    Google Scholar 

  26. Chia, K., Cheok, A., Prince, S.: Online 6DOF augmented reality registration from natural features. In: First Int. Symposium on Mixed and Augmented Reality, Darmstadt, Germany, pp. 305–313 (2002)

    Google Scholar 

  27. Najafi, H., Navab, N., Klinker, G.: Automated initialization for marker–less tracking: A sensor fusion approach. In: Third IEEE and ACM International Symposium on Mixed and Augmented Reality, Arlington, VA, USA, pp. 110–119 (2004)

    Google Scholar 

  28. Koch, R., Koeser, K., Streckel, B., Evers-Senne, J.: Markerless image–based 3d tracking for real–time augmented reality applications. In: The 7th Int. Workshop on Image analysis for multimedia interactive services, Montreux, Switzerland (2005)

    Google Scholar 

  29. Fischler, M., Bolles, C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  30. Horaud, R., Conio, B., Leboulleux, O.: An analytical solution for the perspective–4–point problem. Computer Vision, Graphics, and Image Processing 47, 33–44 (1989)

    Article  Google Scholar 

  31. DeMenthon, D., Davis, L.: Model–based object pose in 25 lines of code. Int. Journal of Computer Vision 15, 123–141 (1995)

    Article  Google Scholar 

  32. Oberkampf, D., De Menthon, D., Davis, L.: Iterative pose estimation using coplanar feature points. Computer Vision and Image Understanding 63, 495–511 (1996)

    Article  Google Scholar 

  33. Schweighofer, G., Pinz, A.: Robust pose estimation from a planar target. In: Technical Report, TR–EMT–2005–01, Graz University of Technology (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yuan, C. (2006). Markerless Pose Tracking for Augmented Reality. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919476_72

Download citation

  • DOI: https://doi.org/10.1007/11919476_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48628-2

  • Online ISBN: 978-3-540-48631-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics