Skip to main content

A Method for the Automatic Analysis of Colour Category Pixel Shifts During Dichromatic Vision

  • Conference paper
Advances in Visual Computing (ISVC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4292))

Included in the following conference series:

  • 2006 Accesses

Abstract

In this paper we present a method for automatically evaluating the amount of colour changes images undergo when perceived by individuals with colour deficient vision. This measure enables the classification of images based on the extent images visually change when viewed by people with one of the three classes of dichromatic (protanopia, deuteranopia, and tritanopia) colour vision. By measuring the extent that colour images appear perceptually different a designer, or automated layout technique, will have an indication of whether the choice of colour usage in an image could lead to colour ambiguity or colour confusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hunt, R.: Measuring Colour, 3rd edn. Fountain Press (2001)

    Google Scholar 

  2. Hurvich, L.M.: Color Vision. Sinauer Associates Inc. (1981)

    Google Scholar 

  3. Berlin, B., Kay, P.: Basic Color Terms: Their Universality and Evolution. University of California Press, London (1969)

    Google Scholar 

  4. Mollon, J.D., Pokorny, J., Knoblauch, K.: Normal and Defective Colour Vision. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  5. Bruce, V., Green, P.R., Georgeson, M.A.: Visual Perception: Physiology, Psychology and Ecology. Psychology, Hove (1996)

    Google Scholar 

  6. Palmer, S.E.: Vision Science: Photons to Phenomenlogy. MIT Press, Cambridge (1999)

    Google Scholar 

  7. Meyer, G., Greenberg, D.: Color-defective vision and computer graphics displays. IEEE Computer Graphics and Applications 8, 28–40 (1988)

    Article  Google Scholar 

  8. Brettel, H., Viénot, F., Mollon, J.D.: Computerized simulation of color appearance for dichromats. Journal of the Optical Society of America. A, Optics and image science 14, 2647–2655 (1997)

    Article  Google Scholar 

  9. Dougherty, R., Wade, A.: Vischeck (2006), http://www.vischeck.com

  10. Becker, S., Tu, C., Kim, H.: Software tools for the effective use of color in web designs. In: Proceedings of the 2004 National Conference on Digital Government Research, Seattle, Washington, pp. 385–386 (2004)

    Google Scholar 

  11. Dougherty, R., Wade, A.: Daltonize algorithm (2006), http://www.vischeck.com/daltonize

  12. Rasche, K., Geist, R., Westall, J.: Re-coloring images for gamuts of lower dimension. In: Alexa, M., Marks, J. (eds.) Eurographics, The Eurographics Association, vol. 24. Blackwell Publishing, Malden (2005)

    Google Scholar 

  13. Carney, T., Klein, S.A., Tyler, C.W., Silverstein, A.D., Beutter, B., Levi, D., Watson, A.B., Reeves, A.J., Norcia, A.M., Chen, C.C., Makous, W., Eckstein, M.P.: The development of an image/threshold database for designing and testing human vision models. In: Human Vision, Visual Processing, and Digital Display IX, Proc. SPIE, vol. 3644, pp. 542–551 (1999)

    Google Scholar 

  14. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  15. Kay, P.: Color categorization. MIT Encyclopedia of the cognitive sciences (1999)

    Google Scholar 

  16. Lammens, J.M.G.: A Computational Model of Color Perception and Color Naming. PhD thesis, State University of New York at Buffalo (Computer Science) (1994)

    Google Scholar 

  17. Belpaeme, T.: Factors influencing the origins of colour categories. PhD thesis, Artificial Intelligence Lab, Vrije Universiteit Brussel (2002)

    Google Scholar 

  18. Yendrikhovskij, S.N.: Computing color categories from statistics of natural images. Journal of Imaging Science and Technology 45, 409–417 (2001)

    Google Scholar 

  19. Saunders, B., van Brakel, J.: Are there non-trivial constraints on colour categorization? Behavioral and Brain Sciences 20, 167–228 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bennett, M., Quigley, A. (2006). A Method for the Automatic Analysis of Colour Category Pixel Shifts During Dichromatic Vision. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919629_47

Download citation

  • DOI: https://doi.org/10.1007/11919629_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48626-8

  • Online ISBN: 978-3-540-48627-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics