Skip to main content

Learning for Multi-view 3D Tracking in the Context of Particle Filters

  • Conference paper
Advances in Visual Computing (ISVC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4292))

Included in the following conference series:

  • 1998 Accesses

Abstract

In this paper we present an approach to use prior knowledge in the particle filter framework for 3D tracking, i.e. estimating the state parameters such as joint angles of a 3D object. The probability of the object’s states, including correlations between the state parameters, is learned a priori from training samples. We introduce a framework that integrates this knowledge into the family of particle filters and particularly into the annealed particle filter scheme. Furthermore, we show that the annealed particle filter also works with a variational model for level set based image segmentation that does not rely on background subtraction and, hence, does not depend on a static background. In our experiments, we use a four camera set-up for tracking the lower part of a human body by a kinematic model with 18 degrees of freedom. We demonstrate the increased accuracy due to the prior knowledge and the robustness of our approach to image distortions. Finally, we compare the results of our multi-view tracking system quantitatively to the outcome of an industrial marker based tracking system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. In: Statistics for Engineering and Information Science. Springer, New York (2001)

    Google Scholar 

  2. Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking. Int. J. of Computer Vision 29, 5–28 (1998)

    Article  Google Scholar 

  3. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. Int. J. of Computer Vision 61, 185–205 (2005)

    Article  Google Scholar 

  4. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Sidenbladh, H., Black, M.J., Sigal, L.: Implicit probabilistic models of human motion for synthesis and tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 784–800. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Sminchisescu, C., Triggs, B.: Estimating articulated human motion with covariance scaled sampling. Int. J. of Robotics Research 22, 371–391 (2003)

    Article  Google Scholar 

  7. Sminchisescu, C., Jepson, A.: Generative modeling for continuous non-linearily embedded visual inference. In: Int. Conf. on Machine Learning (2004)

    Google Scholar 

  8. Brox, T., Rosenhahn, B., Kersting, U.G., Cremers, D.: Nonparametric density estimation for human pose tracking. In: Franke, K., Müller, K.-R., Nickolay, B., Schäfer, R. (eds.) DAGM 2006. LNCS, vol. 4174, pp. 546–555. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Unsupervised segmentation incorporating colour, texture, and motion. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 353–360. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Rosenhahn, B., Brox, T., Smith, D., Gurney, J., Klette, R.: A system for marker-less human motion estimation. Künstliche Intelligenz 1, 45–51 (2006)

    Google Scholar 

  11. Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners. IEEE Transaction on Signal Processing 50, 736–746 (2002)

    Article  MathSciNet  Google Scholar 

  12. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  13. Brox, T., Rosenhahn, B., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 109–116. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Parzen, E.: On estimation of a probability density function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  15. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    MATH  Google Scholar 

  16. Mukundan, R., Ramakrishnan, K.: Moment Functions in Image Analysis: Theory and Application. World Scientific Publishing, Singapore (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gall, J., Rosenhahn, B., Brox, T., Seidel, HP. (2006). Learning for Multi-view 3D Tracking in the Context of Particle Filters. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2006. Lecture Notes in Computer Science, vol 4292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11919629_7

Download citation

  • DOI: https://doi.org/10.1007/11919629_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48626-8

  • Online ISBN: 978-3-540-48627-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics