Abstract
In this paper we introduce a new pruning mechanism, called Similarity Pruning for Probabilistic Opponent-Model (PrOM) Search. It is based on imposing a bound on the differences between two or more evaluation functions. Assuming such a bound exists, we are able to prove two theoretical properties, viz., the bound-conservation property and the bounded-gain property. Using these properties we develop a Similarity-Pruning algorithm. Subsequently we conduct a series of experiments on random game trees to measure the efficiency of the new algorithm. The results show that Similarity Pruning increases the efficiency of PrOM search considerably.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carmel, D., Markovitch, S.: Learning and Using Opponent Models in Adversary Search. Technical Report CIS9609, Technion, Haifa, Israel (1996)
Carmel, D., Markovitch, S.: Pruning Algorithms for Multi-Model Adversary Search. Artificial Intelligence 99(2), 325–355 (1998)
Donkers, H.H.L.M.: Nosce Hostem: Searching with Opponent Models. PhD thesis, Universiteit Maastricht. Universitaire Pers Maastricht, Maastricht, The Netherlands (2003)
Donkers, H.H.L.M., Uiterwijk, J.W.H.M., van den Herik, H.J.: Probabilistic Opponent-Model Search. Information Sciences 135(3–4), 123–149 (2001)
Donkers, H.H.L.M., van den Herik, H.J., Uiterwijk, J.W.H.M.: Probabilistic Opponent-Model Search in Bao. In: Rauterberg, M. (ed.) ICEC 2004. LNCS, vol. 3166, pp. 409–419. Springer, Heidelberg (2004)
Iida, H., Uiterwijk, J.W.H.M., van den Herik, H.J., Herschberg, I.S.: Potential Applications of Opponent-Model Search. Part 1: the Domain of Applicability. ICCA Journal 16(4), 201–208 (1993)
Korf, R.E.: Multi-Player Alpha-Beta Pruning. Artificial Intelligence 48(1), 99–111 (1991)
Luckhardt, C.A., Irani, K.B.: An Algorithmic Solution of n-Person Games. In: Proceedings AAAI 1986, pp. 158–162 (1986)
Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudorandom Number Generator. ACM Transactions on Modeling and Computer Simulation 7(1), 3–30 (1998)
Newborn, M.M.: The Efficiency of the Alpha-Beta Search on Trees with Branch-Dependent Terminal Node Scores. Artificial Intelligence 87(1-2), 225–293 (1977)
Sturtevant, N.R.: Last-Branch and Speculative Pruning Algorithms for Maxn. In: Proceedings IJCAI 2003, pp. 669–678 (2003)
Sturtevant, N.R., Korf, R.E.: On Pruning Techniques for Multi-Player Games. In: Proceedings of AAAI 2000, pp. 201–208 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Donkers, H.(.H.L.M., van den Herik, H.J., Uiterwijk, J.W.H.M. (2006). Similarity Pruning in PrOM Search. In: van den Herik, H.J., Hsu, SC., Hsu, Ts., Donkers, H.H.L.M.(. (eds) Advances in Computer Games. ACG 2005. Lecture Notes in Computer Science, vol 4250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922155_5
Download citation
DOI: https://doi.org/10.1007/11922155_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48887-3
Online ISBN: 978-3-540-48889-7
eBook Packages: Computer ScienceComputer Science (R0)