Skip to main content

On the Topologies of Local Minimum Spanning Trees

  • Conference paper
Combinatorial and Algorithmic Aspects of Networking (CAAN 2006)

Abstract

This paper is devoted to study the combinatorial properties of Local Minimum Spanning Trees (LMSTs), a geometric structure that is attracting increasing research interest in the wireless sensor networks community. Namely, we study which topologies are allowed for a sensor network that uses, for supporting connectivity, a local minimum spanning tree approach. First, we refine the current definition of LMST realizability, focusing on the role of the power of transmission (i.e., of the radius of the covered area). Second, we show simple planar, connected, and triangle-free graphs with maximum degree 3 that cannot be represented as an LMST. Third, we present several families of graphs that can be represented as LMSTs. Then, we show a relationship between planar graphs and their representability as LMSTs based on homeomorphism. Finally, we show that the general problem of determining whether a graph is LMST representable is NP-hard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wireless Networks 7(6), 609–616 (2001)

    Article  MATH  Google Scholar 

  2. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Computational Geometry. Theory and Applications 9(1-2), 3–24 (1998)

    MATH  MathSciNet  Google Scholar 

  3. Cartigny, J., Ingelrest, F., Simplot-Ryl, D., Stojmenovic, I.: Localized lmst and rng based minimum-energy broadcast protocols in ad hoc networks. Ad Hoc Networks 3(1), 1–16 (2005)

    Article  Google Scholar 

  4. Cortese, P.F., Di Battista, G., Frati, F., Grilli, L., Lehmann, K.A., Liotta, G., Patrignani, M., Tollis, I.G., Trotta, F.: On the topologies of local minimum spanning tree. Technical Report RT-001-06, Dip. Ing. Elettr. e dell’Informaz., Univ. Perugia (2006)

    Google Scholar 

  5. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  6. Di Battista, G., Liotta, G., Whitesides, S.: The strength of weak proximity. In Graph Drawing, 178–189 (1995)

    Google Scholar 

  7. Dolev, D., Trickey, H.: On linear area embedding of planar graphs. Technical Report Report No. STAN-CS-81-876, Department of Computer Science, Stanford University (1981)

    Google Scholar 

  8. Gary, M.R., Johnson, D.S.: Computers and Intractability - A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)

    Google Scholar 

  9. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proc. IEEE 80(9), 1502–1517 (1992)

    Article  Google Scholar 

  10. Jones, C.E., Sivalingam, K.M., Agrawal, P., Chen, J.C.: A survey of energy efficient network protocols for wireless networks. Wireless Networks 7(4), 343–358 (2001)

    Article  MATH  Google Scholar 

  11. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Unit disk graph approximation. In: Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (2004)

    Google Scholar 

  12. Kuhn, F., Wattenhofer, R., Zollinger, A.: A worst-case optimal and average-case efficient geometric ad-hoc routing. In: ACM MobiHoc (2003)

    Google Scholar 

  13. Lenhart, W., Liotta, G.: The drawability problem for minimum weight triangulations. Theoretical Computer Science 270, 261–286 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Li, N., Hou, J.C., Sha, L.: Design and analysis of an mst-based topology control algorithm. In: INFOCOM (2003)

    Google Scholar 

  15. Li, X.Y.: Applications of computational geometry in wireless networks. In: Cheng, X., Huang, X., Du, D.Z. (eds.) Ad Hoc Wireless Networking. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  16. Li, X.Y., Calinescu, G., Wan, P.J., Wang, Y.: Localized delaunay triangulation with application in ad hoc wireless networks. IEEE Transactions on Parallel and Distributed Systems 14, 1035–1047 (2003)

    Article  Google Scholar 

  17. Li, X.Y., Song, W.Z., Wang, W.: A unified energy efficient topology for unicast and broadcast. In: Proc. MobiCom 2005 (2005)

    Google Scholar 

  18. Li, X.Y., Stojmenovic, I., Wang, Y.: Partial delaunay triangulation and degree limited localized bluetooth scatternet formation. IEEE Transactions on Parallel and Distributed Systems 15(4), 350–361 (2004)

    Article  Google Scholar 

  19. Monma, C.L., Suri, S.: Transitions in geometric minimum spanning trees. Discrete & Computational Geometry 8, 265–293 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. Pinchasi, R., Smorodinsky, S.: On locally delaunay geometric graphs. In: Proc. 20th ACM Symposium on Computational Geometry (SoCG 2004), pp. 378–382 (2004)

    Google Scholar 

  21. Toussaint, G.: Geometric proximity graphs for improving nearest neighbor methods in instance-based learning and data mining. International Journal of Comput. Geom. and Applications 15(2), 101–150 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cortese, P.F. et al. (2006). On the Topologies of Local Minimum Spanning Trees. In: Erlebach, T. (eds) Combinatorial and Algorithmic Aspects of Networking. CAAN 2006. Lecture Notes in Computer Science, vol 4235. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922377_4

Download citation

  • DOI: https://doi.org/10.1007/11922377_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48822-4

  • Online ISBN: 978-3-540-48824-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics