Skip to main content

Relational Reasoning for Recursive Types and References

  • Conference paper
Programming Languages and Systems (APLAS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4279))

Included in the following conference series:

Abstract

We present a local relational reasoning method for reasoning about contextual equivalence of expressions in a λ-calculus with recursive types and general references. Our development builds on the work of Benton and Leperchey, who devised a nominal semantics and a local relational reasoning method for a language with simple types and simple references. Their method uses a parameterized logical relation. Here we extend their approach to recursive types and general references. For the extension, we build upon Pitts’ and Shinwell’s work on relational reasoning about recursive types (but no references) in nominal semantics. The extension is non-trivial because of general references (higher-order store) and makes use of some new ideas for proving the existence of the parameterized logical relation and for the choice of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahmed, A.: Step-indexed syntactic logical relations for recursive and quantified types. In: Sestoft, P. (ed.) ESOP 2006 and ETAPS 2006. LNCS, vol. 3924, pp. 69–83. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Benton, N., Leperchey, B.: Relational reasoning in a nominal semantics for storage. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 86–101. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Birkedal, L., Harper, R.: Constructing interpretations of recursive types in an operational setting. Information and Computation 155, 3–63 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Koutavas, V., Wand, M.: Bisimulations for untyped imperative objects. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 146–161. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order imperative programs. In: POPL 2006: Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 141–152. ACM Press, New York (2006)

    Google Scholar 

  6. Mason, I.A., Smith, S., Talcott, C.L.: From operational semantics to domain theory. Information and Computation 128(1), 26–47 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pitts, A.: Relational properties of domains. Information and Computation 127, 66–90 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Pitts, A.M., Stark, I.: Observable properties of higher order functions that dynamically create local names, or: What’s new? In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 122–141. Springer, Heidelberg (1993)

    Google Scholar 

  9. Reddy, U., Yang, H.: Correctness of data representations involving heap data structures. Science of Computer Programming 50(1-3), 129–160 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS 2002), Copenhagen, Denmark, pp. 55–74. IEEE Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  11. Shinwell, M.: The Fresh Approach: Functional Programming with Names and Binders. PhD thesis, Computer Laboratory, Cambridge (December 2004)

    Google Scholar 

  12. Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. Theoretical Computer Science 342, 28–55 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. In: ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), Long Beach, California (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bohr, N., Birkedal, L. (2006). Relational Reasoning for Recursive Types and References. In: Kobayashi, N. (eds) Programming Languages and Systems. APLAS 2006. Lecture Notes in Computer Science, vol 4279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11924661_5

Download citation

  • DOI: https://doi.org/10.1007/11924661_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48937-5

  • Online ISBN: 978-3-540-48938-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics