Abstract
We present an application of the Reo coordination paradigm to provide a compositional formal model for describing and reasoning about the behaviour of biological systems, such as regulatory gene networks. Reo governs the interaction and flow of data between components by allowing the construction of connector circuits which have a precise formal semantics. When applied to systems biology, the result is a graphical model, which is comprehensible, mathematically precise, and flexible.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fontana, W., Buss, L.W.: The barrier of objects: From dynamical systems to bounded organizations. In: Casti, J., Karlqvist, A. (eds.) Boundaries and Barriers, pp. 56–116. Addison-Wesley, Reading (1996)
Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Pacific Symposium on Biocomputing, vol. 6, pp. 459–470 (2001)
Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science (2003)
Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325, 69–110 (2004)
Danos, V., Pradalier, S.: Projective Brane Calculus. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 134–148. Springer, Heidelberg (2005)
Chang, B.Y.E., Sridharan, M.: PML: Towards a high-level formal language for biological systems. In: BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science (2003)
Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An abstraction for biological compartments. Theoretical Computer Science, Special Issue on Computational Methods in Systems Biology 325, 141–167 (2004)
Kuttler, C., Niehren, J., Blossey, R.: Gene regulation in the pi calculus: Simulating cooperativity at the lambda switch. In: Workshop on Concurrent Models in Molecular Biology. BIO-CONCUR workshop proceedings. ENTCS. Elsevier, Amsterdam (2004)
Savageau, M.A.: Rules for the evolution of gene circuitry. In: Pacific Symposium of Biocomputing, pp. 54–65 (1998)
Kitano, H.: A graphical notation for biochemical networks. BIOSILICO 1, 169–176 (2003)
Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. In: Proc. Pacific Symposium on Biocomputing, vol. 5, pp. 341–352 (2000)
McAdams, H., Shapiro, L.: Circuit simulation of genetic networks. Science 269, 650–656 (1995)
Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325, 25–44 (2004)
Malone, T., Crowston, K.: The interdisciplinary study of coordination. ACM Computing Surveys 26, 87–119 (1994)
Arbab, F.: Reo: A channel-based coordination model for component composition. Mathematical Structures in Computer Science 14, 329–366 (2004)
Arbab, F.: Abstract behavior types: A foundation model for components and their composition. In: [31], pp. 33–70 (2003)
Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component connectors in Reo by constraint automata. In: International Workshop on Foundations of Coordination Languages and Software Architectures (FOCSLA), Marseille, France. ENTCS, Elsevier, Amsterdam (2003)
Wolkenhauer, O., Ghosh, B., Cho, K.H.: Control & coordination in biochemical networks (editorial notes). IEEE CSM Special Issue on Systems Biology (2004)
Stryer, L.: Biochemistry. Freeman, New York (1988)
Department of Energy, U. (2004), http://www.doegenomestolife.org/
Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Annual Review of Genomics and Human Genetics 2, 343–372 (2001)
Arbab, F., Baier, C., de Boer, F., Rutten, J.: Modeling and temporal logics for timed component connectors. In: IEEE International Conference on Software Engineering and Formal Methods (SEFM 2004), Beijing, China (submitted, 2004)
Glass, K., Kauffman, S.A.: The logical analysis of continuous, nonlinear biochemical control networks. J. Theoretical Biology 44, 103–129 (1974)
Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)
Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)
Cardelli, L.: Brane calculi: Interaction of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)
Regev, A.: Representation and simulation of molecular pathways in the stochastic pi-calculus. In: 2nd Workshop on Computation of Biochemical Pathways and Genetic Networks (2001)
Schmulevich, I., Dougherty, E.R., Zhang, W.: From boolean to probabilistic boolean networks as models of genetic regulatory networks. Proceedings of the IEEE 90 (2002)
Cho, K.H., Wolkenhauer, K.H.J.O.: A hybrid systems framework for cellular processes. BioSystems (2005)
Guillen-Scholten, J.V.: A first translation from Reo to Petri nets and vice-versa, Talk at ACG meeting, CWI (2004)
de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.): FMCO 2002. LNCS, vol. 2852. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Clarke, D., Costa, D., Arbab, F. (2006). Modelling Coordination in Biological Systems. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods. ISoLA 2004. Lecture Notes in Computer Science, vol 4313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925040_2
Download citation
DOI: https://doi.org/10.1007/11925040_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-48928-3
Online ISBN: 978-3-540-48929-0
eBook Packages: Computer ScienceComputer Science (R0)