Skip to main content

Modelling Coordination in Biological Systems

  • Conference paper
Leveraging Applications of Formal Methods (ISoLA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4313))

  • 405 Accesses

Abstract

We present an application of the Reo coordination paradigm to provide a compositional formal model for describing and reasoning about the behaviour of biological systems, such as regulatory gene networks. Reo governs the interaction and flow of data between components by allowing the construction of connector circuits which have a precise formal semantics. When applied to systems biology, the result is a graphical model, which is comprehensible, mathematically precise, and flexible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fontana, W., Buss, L.W.: The barrier of objects: From dynamical systems to bounded organizations. In: Casti, J., Karlqvist, A. (eds.) Boundaries and Barriers, pp. 56–116. Addison-Wesley, Reading (1996)

    Google Scholar 

  2. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the Ï€-calculus process algebra. In: Pacific Symposium on Biocomputing, vol. 6, pp. 459–470 (2001)

    Google Scholar 

  3. Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science (2003)

    Google Scholar 

  4. Danos, V., Laneve, C.: Formal molecular biology. Theoretical Computer Science 325, 69–110 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Danos, V., Pradalier, S.: Projective Brane Calculus. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 134–148. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Chang, B.Y.E., Sridharan, M.: PML: Towards a high-level formal language for biological systems. In: BIO-CONCUR 2003, Marseille, France. Electronic Notes in Theoretical Computer Science (2003)

    Google Scholar 

  7. Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An abstraction for biological compartments. Theoretical Computer Science, Special Issue on Computational Methods in Systems Biology 325, 141–167 (2004)

    MATH  MathSciNet  Google Scholar 

  8. Kuttler, C., Niehren, J., Blossey, R.: Gene regulation in the pi calculus: Simulating cooperativity at the lambda switch. In: Workshop on Concurrent Models in Molecular Biology. BIO-CONCUR workshop proceedings. ENTCS. Elsevier, Amsterdam (2004)

    Google Scholar 

  9. Savageau, M.A.: Rules for the evolution of gene circuitry. In: Pacific Symposium of Biocomputing, pp. 54–65 (1998)

    Google Scholar 

  10. Kitano, H.: A graphical notation for biochemical networks. BIOSILICO 1, 169–176 (2003)

    Article  Google Scholar 

  11. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. In: Proc. Pacific Symposium on Biocomputing, vol. 5, pp. 341–352 (2000)

    Google Scholar 

  12. McAdams, H., Shapiro, L.: Circuit simulation of genetic networks. Science 269, 650–656 (1995)

    Article  Google Scholar 

  13. Chabrier-Rivier, N., Chiaverini, M., Danos, V., Fages, F., Schächter, V.: Modeling and querying biomolecular interaction networks. Theoretical Computer Science 325, 25–44 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Malone, T., Crowston, K.: The interdisciplinary study of coordination. ACM Computing Surveys 26, 87–119 (1994)

    Article  Google Scholar 

  15. Arbab, F.: Reo: A channel-based coordination model for component composition. Mathematical Structures in Computer Science 14, 329–366 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Arbab, F.: Abstract behavior types: A foundation model for components and their composition. In: [31], pp. 33–70 (2003)

    Google Scholar 

  17. Arbab, F., Baier, C., Rutten, J.J.M.M., Sirjani, M.: Modeling component connectors in Reo by constraint automata. In: International Workshop on Foundations of Coordination Languages and Software Architectures (FOCSLA), Marseille, France. ENTCS, Elsevier, Amsterdam (2003)

    Google Scholar 

  18. Wolkenhauer, O., Ghosh, B., Cho, K.H.: Control & coordination in biochemical networks (editorial notes). IEEE CSM Special Issue on Systems Biology (2004)

    Google Scholar 

  19. Stryer, L.: Biochemistry. Freeman, New York (1988)

    Google Scholar 

  20. Department of Energy, U. (2004), http://www.doegenomestolife.org/

  21. Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: systems biology. Annual Review of Genomics and Human Genetics 2, 343–372 (2001)

    Article  Google Scholar 

  22. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Modeling and temporal logics for timed component connectors. In: IEEE International Conference on Software Engineering and Formal Methods (SEFM 2004), Beijing, China (submitted, 2004)

    Google Scholar 

  23. Glass, K., Kauffman, S.A.: The logical analysis of continuous, nonlinear biochemical control networks. J. Theoretical Biology 44, 103–129 (1974)

    Google Scholar 

  24. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  25. Regev, A., Shapiro, E.: Cells as computation. Nature 419, 343 (2002)

    Article  Google Scholar 

  26. Cardelli, L.: Brane calculi: Interaction of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  27. Regev, A.: Representation and simulation of molecular pathways in the stochastic pi-calculus. In: 2nd Workshop on Computation of Biochemical Pathways and Genetic Networks (2001)

    Google Scholar 

  28. Schmulevich, I., Dougherty, E.R., Zhang, W.: From boolean to probabilistic boolean networks as models of genetic regulatory networks. Proceedings of the IEEE 90 (2002)

    Google Scholar 

  29. Cho, K.H., Wolkenhauer, K.H.J.O.: A hybrid systems framework for cellular processes. BioSystems (2005)

    Google Scholar 

  30. Guillen-Scholten, J.V.: A first translation from Reo to Petri nets and vice-versa, Talk at ACG meeting, CWI (2004)

    Google Scholar 

  31. de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.): FMCO 2002. LNCS, vol. 2852. Springer, Heidelberg (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clarke, D., Costa, D., Arbab, F. (2006). Modelling Coordination in Biological Systems. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods. ISoLA 2004. Lecture Notes in Computer Science, vol 4313. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925040_2

Download citation

  • DOI: https://doi.org/10.1007/11925040_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48928-3

  • Online ISBN: 978-3-540-48929-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics