Skip to main content

A Polynomial Algorithm for 2-Cyclic Robotic Scheduling

  • Conference paper
MICAI 2006: Advances in Artificial Intelligence (MICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4293))

Included in the following conference series:

  • 1027 Accesses

Abstract

We solve a single-robot m-machine cyclic scheduling problem arising in flexible manufacturing systems served by computer-controlled robots. The problem is to find the minimum cycle time for the so-called 2-cyclic (or “2-degree”) schedules, in which exactly two parts enter and two parts leave the production line during each cycle. An earlier known polynomial time algorithm for this problem was applicable only to the Euclidean case, where the transportation times must satisfy the “triangle inequality”. In this paper we study a general non-Euclidean case. Applying a geometrical approach, we construct a polynomial time algorithm of complexity O(m 5 log m).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aizenshtat, V.S.: Multi-operator cyclic processes (Russian). Doklady of the Byelorussian Academy of Sciences 7(4), 224–227 (1963)

    MATH  Google Scholar 

  2. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Scheduling Computer and Manufacturing Processes. Springer, Berlin (1996)

    MATH  Google Scholar 

  3. Bloch, A.S., Tanayev, V.S.: Multi-operator processes (Russian). In: Proceedings of the Byelorussian Academy of Sciences (physical and mathematical sciences), vol. (2), pp. 5–11 (1966)

    Google Scholar 

  4. Che, A., Chu, C., Chu, F.: Multicyclic hoist scheduling with constant processing times. IEEE Transactions on Robotics and Automation 18(1), 69–80 (2002)

    Article  Google Scholar 

  5. Che, A., Chu, C., Levner, E.: A polynomial algorithm for 2-degree cyclic robotscheduling. European Journal of Operational research 145(1), 31–44 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chu, C.: A Faster Polynomial Algorithm for 2-cyclic robotic scheduling. Journal of Scheduling (in press, 2006)

    Google Scholar 

  7. Crama, Y., Kats, V., van de Klundert, J., Levner, E.: Cyclic scheduling in robotic flowshop. Annals of operations Research 96(1-4), 97–123 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dawande, M., Geismer, H.N., Sethi, S.P., Sriskandarajah, C.: Sequencing and scheduling in robotic cells: recent developments. Journal of Scheduling 8(5), 387–426 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dawande, M.N., Geismer, H.N., Sethi, S.P., Sriskandarajah, C.: Througput Optimization in Robotic Cells. Springer, Heidelberg (2006)

    Google Scholar 

  10. Kats, V., Levner, E.: Cyclic scheduling on a robotic production line. Journal of Scheduling 5, 23–41 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kats, V., Levner, E.: A strongly polynomial algorithm for no-wait cyclic robotic flowshop scheduling. Operations Research Letters 21, 171–179 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kats, V., Levner, E., Meyzin, L.: Multiple-part cyclic hoist scheduling using a sieve method. IEEE Transactions on Robotics and Automation 15(4), 704–713 (1999)

    Article  Google Scholar 

  13. Lei, L., Liu, Q.: Optimal cyclic scheduling of a robotic processing line with two-product and time-window constraints. INFOR 39(2), 185–199 (2001)

    Google Scholar 

  14. Lei, L., Wang, T.J.: Determining optimal cyclic hoist schedules in a single-hoist electroplating line. IEE Transactions 26(2), 25–33 (1994)

    Article  Google Scholar 

  15. Levner, E., Kats, V., Sriskandarajah, C.: A geometric algorithm for finding two-unit cyclic schedules in no-wait robotic flowshop. In: Proceedings of the International Workshop in Intelligent Scheduling of Robots and FMS, WISOR 1996, pp. 101–112. HAIT Press, Holon, Israel (1996)

    Google Scholar 

  16. Megiddo, N.: Towards a genuinely polynomial algorithm for linear programming. SIAM Journal on Computing 12, 347–353 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pinedo, M.: Scheduling. Theory, Algorithms and Systems, 2nd edn. Prentice-Hall, Englewood Cliffs (2002)

    MATH  Google Scholar 

  18. Sethi, S.P., Sriskandarajah, C., Sorger, G., Blazewicz, J., Kubiak, W.: Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing Systems 4, 331–358 (1992)

    Article  Google Scholar 

  19. Song, W., Zabinsky, Z.B., Storch, L.: An algorithm for scheduling a chemical process tank line. Production Planning & Control 4, 323–332 (1993)

    Article  Google Scholar 

  20. Suprunenko, D.A., Aizenshtat, V.S., Metel’sky, A.S.: Multi-operator transformation processes (in Russian). Doklady of the Byelorussian Academy of Sciences 6(9), 541–544 (1962)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kats, V., Levner, E. (2006). A Polynomial Algorithm for 2-Cyclic Robotic Scheduling. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_41

Download citation

  • DOI: https://doi.org/10.1007/11925231_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49026-5

  • Online ISBN: 978-3-540-49058-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics