Skip to main content

Behavioural Proximity Approach for Alarm Correlation in Telecommunication Networks

  • Conference paper
MICAI 2006: Advances in Artificial Intelligence (MICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4293))

Included in the following conference series:

Abstract

In telecommunication networks, alarms are usually useful for identifying faults, and therefore solving them. However, for large systems the number of alarms produced is so large that the current management systems are overloaded. One way of overcoming this problem is to filter and reduce the number of alarms before the faults can be located. In this paper, we describe a new approach for fault recognition and classification in telecommunication networks. We study and evaluate its performance using real-world data collected from 3G telecommunication networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Himberg, J., Korpiaho, K., Mannila, H., Tikanmaki, J., Toivonen, H.: Time series segmentation for context recognition in mobile devices. In: Proc. of the IEEE International Conference on Data Mining, San Jose, California, USA, pp. 203–210 (2001)

    Google Scholar 

  2. Bouloutas, A., Galo, S., Finkel, A.: Alarm correlation and fault identification in communication networks. IEEE Trans. on Communications 4(2/3/4), 523–533 (1994)

    Article  Google Scholar 

  3. Gardner, R., Harle, D.: Alarm correlation and network fault resolution using kohonen self-organising map. In: IEEE Global Telecom. Conf., New York, vol. 3, pp. 1398–1402 (1997)

    Google Scholar 

  4. Bellec, J.H., Kechadi, M.T., Carthy, J.: Study of telecommunication system behavior based on network alarms. In: Workshop on Data Mining for Business, Porto, Portugal (2005)

    Google Scholar 

  5. Bellec, J.H., Kechadi, M.T., Carthy, J.: A new efficient clustering algorithm for network alarm analysis. In: The 17th IASTED Int’l. Conference on Software Engineering and Applications (SEA 2005), Phoenix, AZ, USA (2005)

    Google Scholar 

  6. Yamanishi, K., Maruyama, Y.: Dynamic syslog mining for network failure monitoring. In: KDD 2005: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pp. 499–508. ACM Press, New York (2005)

    Chapter  Google Scholar 

  7. Julisch, K.: Clustering intrusion detection alarms to support root cause analysis. ACM Trans. Inf. Syst. Secur. 6(4), 443–471 (2003)

    Article  Google Scholar 

  8. Meira, D., Nogueira, J.: Modelling a telecommunication network for fault management applications. In: Proc. of NOMS 1998, pp. 723–732 (1998)

    Google Scholar 

  9. Gopal, R.: Layered model for supporting fault isolation and recovery. In: IEEE/IFIP, Proc. of Network Operation and Management Symposium, Honolulu, Hawaii (2000)

    Google Scholar 

  10. Steinder, M., Sethi, A.: Non-deterministic diagnosis of end-to-end service failures in a multi-layer communication system. In: Proc. of ICCCN 2001, Arizona, pp. 374–379 (2001)

    Google Scholar 

  11. Liu, G., Mok, A., Yang, E.: Composite events for network event correlation. In: IM 1999, pp. 247–260 (1999)

    Google Scholar 

  12. Yemini, S., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D.: High speed and robust event correlation. IEEE Communications Magazine 34(5), 82–90 (1996)

    Article  Google Scholar 

  13. Wietgrefe, H., Tuchs, K.D., Jobmann, K., Carls, G., Frohlich, P., Nejdl, W., Steinfeld, S.: Using neural networks for alarm correlation in cellular phone networks. In: Proc. of IWANNT (1997)

    Google Scholar 

  14. Gardner, R., Harle, D.: Methods and systems for alarm correlation. In: Proc. of Globecom 1996, London, UK, pp. 136–140 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bellec, JH., Kechadi, MT. (2006). Behavioural Proximity Approach for Alarm Correlation in Telecommunication Networks. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_64

Download citation

  • DOI: https://doi.org/10.1007/11925231_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49026-5

  • Online ISBN: 978-3-540-49058-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics