Abstract
In telecommunication networks, alarms are usually useful for identifying faults, and therefore solving them. However, for large systems the number of alarms produced is so large that the current management systems are overloaded. One way of overcoming this problem is to filter and reduce the number of alarms before the faults can be located. In this paper, we describe a new approach for fault recognition and classification in telecommunication networks. We study and evaluate its performance using real-world data collected from 3G telecommunication networks.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Himberg, J., Korpiaho, K., Mannila, H., Tikanmaki, J., Toivonen, H.: Time series segmentation for context recognition in mobile devices. In: Proc. of the IEEE International Conference on Data Mining, San Jose, California, USA, pp. 203–210 (2001)
Bouloutas, A., Galo, S., Finkel, A.: Alarm correlation and fault identification in communication networks. IEEE Trans. on Communications 4(2/3/4), 523–533 (1994)
Gardner, R., Harle, D.: Alarm correlation and network fault resolution using kohonen self-organising map. In: IEEE Global Telecom. Conf., New York, vol. 3, pp. 1398–1402 (1997)
Bellec, J.H., Kechadi, M.T., Carthy, J.: Study of telecommunication system behavior based on network alarms. In: Workshop on Data Mining for Business, Porto, Portugal (2005)
Bellec, J.H., Kechadi, M.T., Carthy, J.: A new efficient clustering algorithm for network alarm analysis. In: The 17th IASTED Int’l. Conference on Software Engineering and Applications (SEA 2005), Phoenix, AZ, USA (2005)
Yamanishi, K., Maruyama, Y.: Dynamic syslog mining for network failure monitoring. In: KDD 2005: Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pp. 499–508. ACM Press, New York (2005)
Julisch, K.: Clustering intrusion detection alarms to support root cause analysis. ACM Trans. Inf. Syst. Secur. 6(4), 443–471 (2003)
Meira, D., Nogueira, J.: Modelling a telecommunication network for fault management applications. In: Proc. of NOMS 1998, pp. 723–732 (1998)
Gopal, R.: Layered model for supporting fault isolation and recovery. In: IEEE/IFIP, Proc. of Network Operation and Management Symposium, Honolulu, Hawaii (2000)
Steinder, M., Sethi, A.: Non-deterministic diagnosis of end-to-end service failures in a multi-layer communication system. In: Proc. of ICCCN 2001, Arizona, pp. 374–379 (2001)
Liu, G., Mok, A., Yang, E.: Composite events for network event correlation. In: IM 1999, pp. 247–260 (1999)
Yemini, S., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D.: High speed and robust event correlation. IEEE Communications Magazine 34(5), 82–90 (1996)
Wietgrefe, H., Tuchs, K.D., Jobmann, K., Carls, G., Frohlich, P., Nejdl, W., Steinfeld, S.: Using neural networks for alarm correlation in cellular phone networks. In: Proc. of IWANNT (1997)
Gardner, R., Harle, D.: Methods and systems for alarm correlation. In: Proc. of Globecom 1996, London, UK, pp. 136–140 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bellec, JH., Kechadi, MT. (2006). Behavioural Proximity Approach for Alarm Correlation in Telecommunication Networks. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_64
Download citation
DOI: https://doi.org/10.1007/11925231_64
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49026-5
Online ISBN: 978-3-540-49058-6
eBook Packages: Computer ScienceComputer Science (R0)