Skip to main content

Design and Simulation of Self-repairing DNA Lattices

  • Conference paper
DNA Computing (DNA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4287))

Included in the following conference series:

Abstract

Self-repair is essential to all living systems, providing the ability to remain functional in spite of gradual damage. In the context of self-assembly of self-repairing synthetic biomolecular systems, recently Winfree developed a method for transforming a set of DNA tiles into its self-healing counterpart at the cost of increasing the lattice area by a factor of 25. The overall focus of this paper, however, is to develop compact designs for self-repairing tiling assemblies with reasonable constraints on crystal growth. Specifically, we use a special class of DNA tiling designs called reversible tiling which when carefully designed can provide inherent self-repairing capabilities to patterned DNA lattices. We further note that we can transform any irreversible computational DNA tile set to its reversible counterpart and hence improve the self-repairability of the computational lattice. But doing the transform with an optimal number of tiles, is still an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Liu, D., Wang, M.S., Deng, Z.X., Walulu, R., Mao, C.D.: J. Am. Chem. Soc.  126, 2324–2325 (2004)

    Google Scholar 

  2. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)

    Article  Google Scholar 

  3. Mao, C., Sun, W., Seeman, N.C.: J. Am. Chem. Soc.  121, 5437–5443 (1999)

    Google Scholar 

  4. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  5. Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)

    Article  Google Scholar 

  6. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)

    Article  Google Scholar 

  7. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Winfree, E.: Self Healing Tile Sets. Nanotechnology: Science and Computation, 3–21 (2006)

    Google Scholar 

  9. Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. In: Tenth International Meeting on DNA Based Computers (DNA10) (2004)

    Google Scholar 

  10. Chen, H.L., Goel, A.: Error Free Self-Assembly using error-prone tiles. DNA Computing 10 (2004)

    Google Scholar 

  11. Schulman, R., Winfree, E.: Controlling nucleation rate in algorithmic self-assembly. DNA Computing 10 (2004)

    Google Scholar 

  12. Hertzberg, R.: Deformation and Fracture Mechanics of Engineering Materials. John Wiley and Sons, NY (1996)

    Google Scholar 

  13. Winfree, E.: Simulations of Computing by Self-Assembly, Caltech CS Tech Report 1998.22

    Google Scholar 

  14. Winfree, E.: On the Computational Power of DNA Annealing and Ligation. DNA Based Computers, 199–221 (1996)

    Google Scholar 

  15. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-Assembled circuit patterns. In: DNA Computers 9. LNCS, vol. 294, pp. 91–107. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Toffoli, T.: Reversible Computing, Automata, Languages and Programming, pp. 632–644. Springer, Heidelberg

    Google Scholar 

  17. Barish, R.D., Rothemund, P.W.K., Winfre, E.: Two Computational Primitives for Algorithmic Self-Assembly: Copying and Counting. Nano Letters 5(12), 2586–2592

    Google Scholar 

  18. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic Self-Assembly of DNA Sierpinski Triangles. PLoS Biology 2(12), e424 (2004)

    Article  Google Scholar 

  19. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  20. Park, S.H., Pistol, C., Ahn, S.J., Reif, J.H., Lebeck, A.R., Dwyer, C., LaBean, T.H.: Finite-size, Fully-Addressable DNA Tile Lattices Formed by Hierarchical Assembly Procedures. Angewandte Chemie 45, 735–739 (2006)

    Article  Google Scholar 

  21. Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata. Theoret. Comput. Sci. 148, 157–163 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hönberg, B., Olin, H.: Programmable Self-Assembly-Unique Structures and Bond Uniqueness. J. Comput. Theor. Nanosci. 3, 1–7 (2006)

    Google Scholar 

  23. Provot, X.: Deformation Constraints in a Mass Spring Model to Describe Rigid Cloth Behavior. In: Proc. Graphics Interface, vol. 95, pp. 147–154 (1995)

    Google Scholar 

  24. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S.: Autonomic healing of polymer composites. Nature 409, 794–797 (2001)

    Article  Google Scholar 

  25. Pistol, C., Lebeck, A.R., Dwyer, C.: Design Automation for DNA Self-Assembled Nanostructures. In: Proceedings of the 43rd Design Automation Conference (DAC) (July 2006)

    Google Scholar 

  26. Park, S.-H., Yin, P., Liu, Y., Reif, J.H., LaBean, T.H., Yan, H.: Programmable DNA Self-assemblies for Nanoscale Organization of Ligands and Proteins. Nano Letters 5, 729–733 (2005)

    Article  Google Scholar 

  27. Sahu, S., Reif, J.: Capabilities and Limits of Compact Error Resilience Methods for Algorithmic Self-Assembly in Two and Three Dimensions. In: Twelfth International Meeting on DNA Based Computers (DNA12), Seoul, Korea, June 5-9 (2006)

    Google Scholar 

  28. Seeman, N.C.: J. Biomol. Struct. Dyn.  8, 573 (1990)

    Google Scholar 

  29. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Nature, 394 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Majumder, U., Sahu, S., LaBean, T.H., Reif, J.H. (2006). Design and Simulation of Self-repairing DNA Lattices. In: Mao, C., Yokomori, T. (eds) DNA Computing. DNA 2006. Lecture Notes in Computer Science, vol 4287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925903_15

Download citation

  • DOI: https://doi.org/10.1007/11925903_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49024-1

  • Online ISBN: 978-3-540-68423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics