Skip to main content

On Times to Compute Shapes in 2D Tile Self-assembly

  • Conference paper
Book cover DNA Computing (DNA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4287))

Included in the following conference series:

Abstract

We study the times to grow structures within the tile self-assembly model proposed by Winfree, and the possible shapes that can be achieved during the self-assembly. Our earlier work was confined to the growth of rectangular structures, in which the border tiles are prefabricated. By varying the relative rates between the border-tile and rule-tile attachment, one can engineer interesting new shapes, which have been observed in the laboratory. We show that the results from an extension of our earlier stochastic models agree remarkably closely with experimental results. This is an important further demonstration of the validity and usefulness of our stochastic models, which have also been used successfully in studies of error correction in DNA self assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology, Pasadena, CA (1998)

    Google Scholar 

  2. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Wasserman, H.: Linear self-assemblies: Equilibria, entropy, and convergence rates. In: Elaydi, Ladas, Aulbach (eds.) New progress in difference equations, Taylor and Francis, London (2004)

    Google Scholar 

  3. Baryshnikov, Y., Coffman, E., Momčilović, P.: Incremental self-assembly in the fluid limit. In: Proc. 38th Ann. Conf. Inf. Sys. Sci., Princeton, NJ (2004)

    Google Scholar 

  4. Baryshnikov, Y., Coffman, E., Momčilović, P.: DNA-based computation times. In: Proc. of the Tenth International Meeting on DNA Computing, Milan, Italy (2004)

    Google Scholar 

  5. Baryshnikov, Y., Coffman, E., Seeman, N., Yimwadsana, B.: Self correcting self assembly: Growth models and the hammersley process. In: Proc. of the Eleventh International Meeting on DNA Computing, London, Ontario (2005)

    Google Scholar 

  6. Ding, B., Sha, R., Seeman, N.: Pseudohexagonal 2D DNA crystals from double crossover cohesion. J. Am. Chem. Soc. 126, 10230–10231 (2004)

    Article  Google Scholar 

  7. Fu, T.J., Seeman, N.: DNA double crossover structures. Biochemistry 32, 3211–3220 (1993)

    Article  Google Scholar 

  8. Liggett, T.M.: Interacting Particle Systems. Springer, New York (1985)

    MATH  Google Scholar 

  9. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., de Espanés, P.M., Rothemund, P.: Combinatorial optimization problems in self-assembly. In: Proc. ACM Symp. Th. Comput., Montreal, Canada, pp. 23–32 (2002)

    Google Scholar 

  10. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: Proc. ACM Symp. Th. Comput., pp. 740–748 (2001)

    Google Scholar 

  11. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares. In: Proc. ACM Symp. Th. Comput., pp. 459–468 (2001)

    Google Scholar 

  12. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: Proc. of the Tenth International Meeting on DNA Computing (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baryshnikov, Y., Coffman, E., Yimwadsana, B. (2006). On Times to Compute Shapes in 2D Tile Self-assembly. In: Mao, C., Yokomori, T. (eds) DNA Computing. DNA 2006. Lecture Notes in Computer Science, vol 4287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925903_16

Download citation

  • DOI: https://doi.org/10.1007/11925903_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49024-1

  • Online ISBN: 978-3-540-68423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics