Skip to main content

Displacement Whiplash PCR: Optimized Architecture and Experimental Validation

  • Conference paper
DNA Computing (DNA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4287))

Included in the following conference series:

Abstract

Whiplash PCR-based methods of biomolecular computation (BMC), while highly-versatile in principle, are well-known to suffer from a simple but serious form of self-poisoning known as back-hybridization. In this work, an optimally re-engineered WPCR-based architecture, Displacement Whiplash PCR (DWPCR) is proposed and experimentally validated. DWPCR’s new rule protect biostep, which is based on the primer-targeted strand-displacement of back-hybridized hairpins, renders the most recently implemented rule-block of each strand unavailable, abolishing back-hybridization after each round of extension. In addition to attaining a near-ideal efficiency, DWPCR’s ability to support isothermal operation at physiological temperatures eliminates the need for thermal cycling, and opens the door for potential biological applications. DWPCR should also be capable of supporting programmable exon shuffling, allowing XWPCR, a proposed method for programmable protein evolution, to more closely imitate natural evolving systems. DWPCR is expected to realize a highly-efficient, versatile platform for routine and efficient massively parallel BMC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., Yokoyama, S.: Towards parallel evaluation and learning of boolean μ-formulas with molecules. In: Rubin, H., Wood, D. (eds.) DNA Based Computers III, pp. 57–72 (2000)

    Google Scholar 

  2. Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama, H., Hagiya, M.: State transitions by molecules. Biosystems 52, 81–91 (1999)

    Article  Google Scholar 

  3. Rose, J.A., Hagiya, M., Deaton, R.J., Suyama, A.: A DNA-based in vitro genetic program. J. Biol. Phys. 28, 493–498 (2002)

    Article  Google Scholar 

  4. Wood, D., Bi, H., Kimbrough, S., Wu, D.J., Chen, J.: DNA starts to learn poker. In: DNA Computing. 7th Int’l Workshop on DNA-Based Computers, pp. 22–32 (2002)

    Google Scholar 

  5. Rose, J.A., Takano, M., Hagiya, M., Suyama, A.: A DNA computing-based genetic program for in vitro protein evolution via constrained pseudomodule shuffling. Journal of Genetic Programming and Evolvable Machines 4 (2003)

    Google Scholar 

  6. Komiya, K., Sakamoto, K., Gouzu, H., Yokohama, S., Arita, M., Nishikawa, A., Hagiya, M.: Successive State Transitions with I/O Interface by Molecules. In: Condon, A., Rozenberg, G. (eds.) DNA 2000. LNCS, vol. 2054, pp. 17–26. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Komiya, K., Sakamoto, K., Kameda, A., Yamamoto, M., Ohuchi, A., Kiga, D., Yokoyama, S., Hagiya, M.: DNA polymerase programmed with a hairpin DNA incorporates a multiple-instruction architecture into molecular computing. Biosystems 83, 18–25 (2006)

    Google Scholar 

  8. Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: Equilibrium analysis of the efficiency of an autonomous molecular computer. Phys. Rev. E 65, 1–13, Article 021910 (2002)

    Article  Google Scholar 

  9. Komiya, K., Yaegashi, S., Suyama, A., Hagiya, M., Rose, J.A.: Experimental validation of the statistical thermodynamic model for prediction of the behavior of autonomous molecular computers based on DNA hairpin formation. In: DNA Computing. 12th Int’l Workshop on DNA-Based Computers (in press, 2006)

    Google Scholar 

  10. New England Biolabs: Klenow Fragment (3L→5L exo-) Technical Bulletin M0212 (2004)

    Google Scholar 

  11. Arita, M., Nishikawa, A., Hagiya, M., Komiya, K., Sakamoto, K., Gouzu, H., Yokoyama, S.: Improving sequence design for DNA computing. In: Proc. 5th Genetic and Evolutionary Computation Conference (GECCO 1999), Las Vegas, pp. 875–882 (2000)

    Google Scholar 

  12. Marras, S., Kramer, F., Tyagi, S.: Efficiencies of FRET and and contact-mediated quenching in oligonucleotide probes. Nucl. Acids. Res. 30, e122 (2002)

    Article  Google Scholar 

  13. Rose, J.A., Deaton, R.J., Suyama, A.: Statistical thermodynamic analysis and design of oligonucleotide based computers. Natural Computing 3 (2004)

    Google Scholar 

  14. SantaLucia, J. J., Hicks, D.: The thermodynamics of DNA structural motifs. Annu. Rev. Biophy. Biomolec. Struct. 33, 415–440 (2004)

    Article  Google Scholar 

  15. Kubota, M., Ohtake, K., Komiya, K., Sakamoto, K., Hagiya, M.: Branching DNA machines based on transitions of hairpin structures. In: Proc. Congr. Evol. Comp (CEC 2003), pp. 2542–2548 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rose, J.A., Komiya, K., Yaegashi, S., Hagiya, M. (2006). Displacement Whiplash PCR: Optimized Architecture and Experimental Validation. In: Mao, C., Yokomori, T. (eds) DNA Computing. DNA 2006. Lecture Notes in Computer Science, vol 4287. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925903_31

Download citation

  • DOI: https://doi.org/10.1007/11925903_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49024-1

  • Online ISBN: 978-3-540-68423-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics