Abstract
In this paper, we explore potential mathematical principles and structures that can provide the foundation for cryptographic hash functions, and also present a simple and efficiently computable hash function based on a non-associative operation with polynomials over a finite field of characteristic 2.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abdukhalikov, K.S., Kim, C.: On the Security of the Hashing Scheme Based on SL 2. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 93–102. Springer, Heidelberg (1998)
Charles, D., Goren, E., Lauter, K.: Cryptographic hash functions from expander graphs (preprint), http://www.math.mcgill.ca/goren/PAPERSpublic/Hashfunction.pdf
Charnes, C., Pieprzyk, J.: Attacking the SL 2 hashing scheme. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994. LNCS, vol. 917, pp. 322–330. Springer, Heidelberg (1995)
Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an Efficient and Provable Collision-Resistant Hash Function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 165–182. Springer, Heidelberg (2006)
Geiselmann, W.: A Note on the Hash Function of Tillich and Zémor. In: Boyd, C. (ed.) Cryptography and Coding 1995. LNCS, vol. 1025, pp. 257–263. Springer, Heidelberg (1995)
Landau, S.: Find Me a Hash. Notices Amer. Math. Soc. 53, 330–332 (2006)
Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)
Steinwandt, R., Grassl, M., Geiselmann, W., Beth, T.: Weaknesses in the \({SL}_{2}({F}_{2^{n}})\) Hashing Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 287–299. Springer, Heidelberg (2000)
Tillich, J.-P., Zémor, G.: Hashing with SL 2. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 40–49. Springer, Heidelberg (1994)
Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shpilrain, V. (2006). Hashing with Polynomials. In: Rhee, M.S., Lee, B. (eds) Information Security and Cryptology – ICISC 2006. ICISC 2006. Lecture Notes in Computer Science, vol 4296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11927587_4
Download citation
DOI: https://doi.org/10.1007/11927587_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49112-5
Online ISBN: 978-3-540-49114-9
eBook Packages: Computer ScienceComputer Science (R0)