Abstract
Algebraic immunity AI(f) defined for a boolean function f measures the resistance of the function against algebraic attacks. Currently known algorithms for computing the optimal annihilator of f and AI(f) are inefficient. This work consists of two parts. In the first part, we extend the concept of algebraic immunity. In particular, we argue that a function f may be replaced by another boolean function f c called the algebraic complement of f. This motivates us to examine AI(f c). We define the extended algebraic immunity of f as AI *(f)= min {AI(f), AI(f c)}. We prove that 0≤AI(f)–AI *(f)≤1. Since AI(f)–AI *(f)= 1 holds for a large number of cases, the difference between AI(f) and AI *(f) cannot be ignored in algebraic attacks. In the second part, we link boolean functions to hypergraphs so that we can apply known results in hypergraph theory to boolean functions. This not only allows us to find annihilators in a fast and simple way but also provides a good estimation of the upper bound on AI *(f).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient Computation of algebraic immunity for algebraic and fast algebraic attacks. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer, Heidelberg (2006)
Carlet, C., Dalai, D., Gupta, K., Maitra, S.: Algebraic immunity for cryptographically significant boolean functions: Analysis and construction. IEEE Transactions on Information Theory IT-xx (x), xxx–xxx (2006)
Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)
Courtois, N.: Higher order correlation attacks, XL algorithm and cryptanalysis of Toyocrypt. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 182–199. Springer, Heidelberg (2003)
Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In Advances in Cryptology - Eurocrypt 2003. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359. Springer, Heidelberg (2003)
Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback (2003), http://www.nicolascourtois.net/toyolili.pdf
Dalai, D., Gupta, K., Maitra, S.: Results on algebraic immunity for cryptographically significant boolean functions. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)
Dalai, D., Gupta, K., Maitra, S.: Cryptographically significant boolean functions: construction and analysis in terms of algebraic immunity. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 98–111. Springer, Heidelberg (2005)
Didier, F., Tillich, J.: Computing the algebraic immunity efficiently. In: Proceedings of Fast Encryption 2006. LNCS. Springer, Heidelberg (2006)
Golomb, S.W.: Shift Register Sequences. Aegean Park, Laguna Hills (1982)
Graham, R.L., Grötschel, M., Lovász, L.: Handbook of Combinatorics, vol. I. Elsevier Science B. V., Amsterdam (1995)
Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. System. Sci. 9, 256–298 (1974)
Lovász, L.: On the ratio of optimal fractional and integral covers. Discrete Math. 13, 383–390 (1975)
Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of boolean functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)
Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)
Nawaz, Y., Gong, G., Gupta, K.: Upper bounds on algebraic immunity of power functions. In: Proceedings of Fast Encryption 2006. LNCS. Springer, Heidelberg (2006)
Sarkar, P., Maitra, S.: Nonlinearity Bounds and Constructions of Resilient Boolean Functions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 515–532. Springer, Heidelberg (2000)
Simpson, L., Dawson, E., Golic, J., Millan, W.: LILI Keystream Generator. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012. Springer, Heidelberg (2001)
Stein, S.K.: Two combinatorial covering theorems. Journal of Combinatorial Theory A 16, 391–397 (1974)
Zheng, Y., Zhang, X.M., Imai, H.: Restrictions, terms and nonlinearity of boolean functions. Theoretical Computer Science 226, 207–223 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, XM., Pieprzyk, J., Zheng, Y. (2006). On Algebraic Immunity and Annihilators. In: Rhee, M.S., Lee, B. (eds) Information Security and Cryptology – ICISC 2006. ICISC 2006. Lecture Notes in Computer Science, vol 4296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11927587_8
Download citation
DOI: https://doi.org/10.1007/11927587_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49112-5
Online ISBN: 978-3-540-49114-9
eBook Packages: Computer ScienceComputer Science (R0)