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Abstract. We revisit a long-lived folklore impossibility result for fac-
toring-based encryption and properly establish that reaching maximally
secure one-wayness (i.e. equivalent to factoring) and resisting chosen-
ciphertext attacks (CCA) are incompatible goals for single-key cryp-
tosystems. We pinpoint two tradeoffs between security notions in the
standard model that have always remained unnoticed in the Random
Oracle (RO) model. These imply that simple RO-model schemes such
as Rabin/RW-SAEP[+]/OAEP[+][+], EPOC-2, etc. admit no instantia-
tion in the standard model which CCA security is equivalent to factoring
via a key-preserving reduction. We extend this impossibility to arbitrary
reductions assuming non-malleable key generation, a property capturing
the intuition that factoring a modulus n should not be any easier when
given a factoring oracle for moduli n’ # n. The only known countermea-
sures against our impossibility results, besides malleable key generation,
are the inclusion of an additional random string in the public key, or en-
cryption twinning as in Naor-Yung or Dolev-Dwork-Naor constructions.

1 Introduction

The Paradox. When a proof is given that some cryptosystem is semantically
secure under chosen ciphertext attack (IND-CCA) under some complexity as-
sumption, one generally checks whether one-wayness can be guaranteed under
a weaker assumption. In the case of simple cryptosystems based on factoring
large integers however, an inevitable tradeoff seems to exist between one-wayness
and chosen ciphertext security. This incompatibility, which was observed for
factoring-based signature schemes as well [20022/13], is folklore knowledge and
dates back to the late eighties. Despite early reasonings and attempts (later
shown to be wrong) by a number of authors to formally prove it, this so-called
“paradox” [I3], Section 4] has remained essentially unexplored in a formal manner
and, surprisingly enough, overlooked by contributors.

It is well known that the one-wayness of Rabin encryption and variants thereof
[22/418)J5] is equivalent to factoring (FACT), meaning that any efficient algorithm
inverting encryption provides an efficient way to factor the modulus. It turns
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out that the same algorithm can be used to totally break the cryptosystem (i.e.
factor the modulus) under a trivial chosen ciphertext attack. This kind of at-
tack has never been reported for RSA. But the one-wayness of RSA has not
been shown to be equivalent to FACT. In fact, there is a separation result by
Boneh and Venkatesan [6] which roughly tells that if a reduction from FACT to
low-exponent RSA existed, then an efficient factoring algorithm could be con-
structed. Simultaneously, RSA-based cryptosystems such as OAEP [3] seem to
resist chosen-ciphertext attacks convincingly well in practice. This provides the
intuition that some sort of incompatibility must exist between achieving one-
wayness under the weakest possible assumption (factoring) and achieving chosen
ciphertext security at all.

In an early attempt to capture this intuition, Williams [22] makes the follow-
ing (over)statemenﬂf: if the one-wayness of a factoring-based cryptosystem & is
equivalent to factoring then £ can be totally broken under chosen-ciphertext at-
tack. A simple proof for this claim was later shown to be incorrect by Goldwasser,
Micali and Rivest [13], and the first public-key encryption scheme fully IND-CCA-
secure under the factoring assumption was then discovered by Dolev, Dwork and
Naor a few years later [10]. However, the incompatibility seems to persist for
factoring-based encryption for which the public key consists of a single modulus.

Our Contributions. Our goal in this paper is to revisit [20022/13] completely
and clarify the conditions for such security incompatibilities to exist. We find
that when properly formulated, certain security reductions for one-wayness and
chosen-ciphertext security are indeed incompatible when considering single-key
factoring-based encryption i.e. where the public key is just made of one hard-
to-factor modulus. We reformulate the paradox observed by Williams in terms
of key-preserving black-box reductions i.e. reductions which always call the ad-
versarial oracle with the public-key they were given as input. We strengthen the
original observation to show that if one can provide a key-preserving reduction
from factoring to the (chosen-plaintext) semantic security of £, then £ cannot
fulfil plaintext-checking security. Plaintext-checking attacks, introduced in [I8],
assume that the attacker is given oracle access to a distinguishing oracle that tells
whether a given ciphertext encrypts a given plaintext. It follows from combining
these results that a wide class of factoring-based cryptosystems admit no key-
preserving black-box reduction from factoring to breaking the security notions
IND-CCA, OW-CCA and IND-PCA in the standard model. This provides black-
box separations with well-known security proofs standing in the RO model [2]
such as the one of Rabin-SAEP [5]. We provide later an explanation as to why
these incompatibilities are avoided in the case of Naor-Yung [I7] and Dolev-
Dwork-Naor [I0] constructions where public keys are composed of two or more
independent moduli, as well as in the RO model.

Finally, we define the notion of non-malleable key generators, which formally
captures the property that the factorizations of two public moduli n,n’ where
n # n’ are somehow “computationally independent” from one another. Similar

! The paradox appearing in [20122I13] is discussed in the context of factoring-based
signatures. This is a straightforward reformulation for factoring-based encryption.
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notions of non-malleability for discrete logarithms recently appeared in [T4J16].
Using non-malleability, we extend the scope of the previous impossibility re-
sults to arbitrary black-box reductions. Our refined results state that simple and
innocuous-looking RO-secure factoring-based encryption schemes (e.g. Rabin-
SAEP), when combined with non-malleable key generation, black-box separate
the RO model from the standard model in a very strong sense: IND-CCA security
is equivalent to FACT in the RO model while no instantiation of these schemes
preserves such equivalence in the standard model.

We note that all impossibility results stated in this paper are easily transposed
(mutatis mutandis) to factoring-based signature schemes. We do not treat the
case of signatures here due to lack of space.

Roadmap. The paper is structured as follows. Section Pl gives preliminary facts
about black-box reductions, single-key factoring-based encryption schemes and
related security notions. Section [3 formally establishes the tradeoff between one-
wayness and chosen ciphertext security. We also put forward a second tradeoff
between semantic security against passive adversaries and plaintext-checking
security. In Section [, we give a formal definition of non-malleable instance gen-
erators and provide extended impossibility results. Section [ discusses possible
countermeasures such as encryption twinning to overcome these tradeoffs. We
finally conclude on directions for further research in Section

2 Preliminaries

Instance Generators. We define FACT as the problem of computing the list of
all prime factors factors(n) = (p1,...,p:) of a randomly chosen positive integer
n. In cryptographic applications, one generally focuses on a specifically chosen
distribution of hard instances by defining an instance generator Gen. Given a
security parameter k, Gen(1*) generates a hard-to-factor modulus n, as well as
the side information factors(n). A probabilistic algorithm A is said to (e, 7)-break
FACT [Gen] when

Pr [(n, factors(n)) « Gen(1¥) : A(n) = factors(n)] > ¢,

where the probability is taken over the random coins of A and Gen and A halts
after 7 steps. FACT [Gen] is commonly referred to as the “factoring problem”
when Gen is specified implicitly. For readability reasons, we may equivalently
write (n, factors(n)) « Gen(1¥) or n « Gen(1%) to state that n is drawn accord-
ing to the distribution induced by Gen(1*). We note P, the range of n i.e.
the set of integers n such that Pr [n < Gen(1*)] > 0 and SK;, = factors(PK}).
Finally PK = UyPKy and SK = UpSKy. Here are some instance generators
commonly used in factoring-based encryption:

Rabin-Williams. Given 1*, select uniformly at random two [k/2]-bit primes p
and ¢ such that p = 3mod 8 and ¢ = 7mod 8. Set n = pg and output

(n, (p,q))-



Trading One-Wayness Against Chosen-Ciphertext Security 255

OU. Given 1*, randomly select two [k/3]-bit primes p and q. Set n = p%q and
output (n, (p,q)).

RSA-e. Given a small integer e and 1*, randomly select two [k/2]-bit primes p
and ¢ such that ged(p — 1,e) = ged(qg — 1,e) = 1. Set n = pg and output
(n, (p, q))-

Sophie-Germain. Given 1*, randomly select two ([k/2] — 1)-bit primes p’ and ¢
such that p = 2p’ +1 and ¢ = 2¢’ + 1 are also primes. Set n = pg and output
(n, (P, q))-

Single-Key Factoring-Based Encryption. A single-key factoring-based encryp-
tion scheme £ with security parameter k can be described as the combination of
an instance generator Gen with a family of trapdoor functions on Gen, namely a
pair (Enc, Dec) such that for any n € PIC, Enc(n, -,-) and Dec(factors(n), ) are
integer-valued functions

Enc(n, -, ) : My xR, — C,,, Dec(factors(n), -) : C,, = M,

where M,,, R,, and C,, denote respectively the plaintext, random and ciphertext
spacesﬁ. We impose that for any n € PK, m € M,, and r € R,,, Dec(factors(n),
Enc(n,m,r)) = m. When Enc(n,M,,,R,) € C,, some elements of C,, are not
proper ciphertexts. When ¢ & Enc(n, M,,,R,), Dec(factors(n), ¢) returns a fail-
ure symbol 1L € M,,. We impose that Enc(n,-,-) and Dec(n,-,-) be efficiently
computable for any arguments i.e. can be evaluated in time at most poly (k) for
n € PKy. We identify £ = (Gen, Enc,Dec) to the three following probabilistic
procedures:

& keygen: Run Gen(1%) to get (n, factors(n)). The secret key is factors(n) while
the public key is n.

&.encrypt: Given a public key n and a message m € M,,, select r < R,, uniformly
at random and compute ¢ = Enc(n, m, r). The output ciphertext is ¢ € C,,.

E.decrypt: Given the secret key factors(n) and a ciphertext ¢ € C,,, output m =
Dec(factors(n), ¢).

Examples of single-key factoring-based cryptosystems as defined above are count-
less: RSAB and its numerous variants OAEP [3], REACT-RSA [I8], PKCS#1
v1.5 [21], Rabin and related systems (Rabin-Williams [22], Blum-Goldwasser
[4], Chor-Goldreich [§], Rabin-SAEP [5]), Naccache-Stern, Okamoto-Uchiyama
and the EPOC family [I2/11], Paillier [19] and variants. Many elliptic-curve-
based cryptosystems such as KMOV [15], Vanstone-Zuccherato or Demytko [J]
also fall into this category. We refer the reader to the extensive literature on
factoring and its applications to cryptography for more detail.

2 R, is the empty set when encryption is deterministic.
3 If the public exponent e is fixed (as usually done in practice), RSA decryption can
be performed given the factors of n only.
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Black-Box Reductions. Black-box reductions constitute a natural tool to re-
late computational problems and capture the way most security proofs are con-
structed. Given two computational problems P; and P;, a black-box reduction
from P; to P» is a probabilistic algorithm R which solves P; with the help of
an oracle solving instances of P». R interacts with the oracle strictly as defined
by the specification of P, and in particular has no view on the internal tapes
of the oracle. The (extra) time of R is the number of elementary steps required
by R to complete given that oracle calls count for one step by convention. A
black-box reduction is polynomial when it runs in polynomial extra time (in
a security parameter). It is crucial to remind that R can be polynomial even
when no polynomial-time algorithm solving P» is known to exist. We denote by
P, < P, the fact that P; is polynomially black-box reducible to P,. We write
P, <r P, when R is known to reduce P; to P,. Polynomial equivalence is
denoted by Py = P». Succ (P, 7) stands for the maximal success probability of
probabilistic algorithms solving P in no more than 7 elementary steps. Similarly,
Succ (P <= P»,T,¢,/) stands for the maximal success probability of probabilistic
algorithms solving P; in no more than 7 elementary steps and at most ¢ calls
to an oracle solving P, with probability €. All the reductions considered in this
paper are black-box.

Security Notions for Factoring-Based Encryption. Security notions for encryp-
tion schemes are obtained by combining an adversarial goal with an attack
model. (Goals) We say that an encryption scheme is unbreakable (UBK) when
one cannot extract the secret key matching a prescribed public key. The scheme
is said to be one-way (OW) when no adversary can recover a plaintext given its
encryption. Indistinguishability (IND, a.k.a. semantic security) relates to the
hardness of deciding whether a given ciphertext encrypts a given plaintext.
(Attacks) We consider three attack models in this paper. In a chosen-plaintext
attack (CPA), the adversary is given nothing more than the public key as in-
put. In a plaintext-checking attack (PCA), the adversary is given access to a
plaintext-checking oracle that tells whether a given ciphertext encrypts a given
plaintext [18]. In a chosen-ciphertext attack (CCA), the adversary has access to
a decryption oracle. Oracle access in OW-CCA, IND-PCA and IND-CCA games is
limited in the sense that the adversary is not allowed to call the oracle on the
challenge ciphertext itself. These definitions are classical. We refer to [IJI8] for
more detail on security notions for encryption schemes.

For convenience, we denote security notions in a positive fashion e.g. OW-PCA [£]
denotes the problem of breaking the one-wayness of £ under plaintext-checking
attack. This convention allows one to easily describe hierarchies between security
notions using reductions. When the focus is on an adaptive attack (i.e. either
PCA or CCA), we denote by ¢-GOAL-ATK][E] the problem of breaking GOAL in no
more than £ calls to the resource defined by ATK. Thus, breaking ¢-IND-CCA [£]
authorizes at most ¢ calls to the decryption oracle to break IND. We recall
that GOAL-CCA[£] < GOAL-PCA [€] <= GOAL-CPA [£] for any factoring-based
encryption scheme £ and adversarial goal GOAL € {UBK,OW,IND}. We also
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UBK-CCA[£] < UBK-PCA[E] < UBK-CPA[£] = FACT [£ keygen]

4 4 4
OW-CCA[£] < OW-PCA[£] < OW-CPA[£]
4 4 4

IND-CCA[€] <« IND-PCA[£] < IND-CPA[£]

Fig. 1. Relations among security notions for single-key factoring-based encryption

have UBK-CPA [€] = FACT [€.keygen]. We plot on Fig. 1 the map of security
levels needed for the sake of this work.

3 Impossibility Results for Key-Preserving Reductions

In this section we focus on the standard-model security of single-key factoring-
based encryption schemes. All black-box reductions known for such schemes are
key-preserving, meaning informally that they make oracle calls to the adversary
with the same key that they are given as input. We properly formalize this
particular class of reductions in our settinﬁ.

3.1 Key-Preserving Black-Box Reductions

Definition. We define key preservation for arbitrary security games related to a
single-key factoring-based encryption scheme £. Assume that P [£] and Pz [€]
are two computational problems (view P; and P» as security notions) associated
to €. Consider a black-box reduction algorithm R such that P; [] < P2 [€],
meaning that R makes oracle calls to an algorithm A breaking P» [£] to break
Py [€]. Let Keys(n, aux,w) be the list (nq,...,ny) of public keys given by R as
input to A where (n,aux) is the modulus and auxiliary input for which R has
to break P; [€] and w € {0,1}P°¥(*) denotes the random tape of R. Here the
auxiliary input aux depends on the specification of P;. Note that the number
£ of oracle calls is a deterministic function of n, aux and w. R is said to be
key-preserving when for any aux,w and n € PKy, either £ = 0 or n; = n for

i€ll,4.

Key-preservation is transitive. It is obvious that if P [€] <gr, P> [€] and P [€]
<g, P3[€] such that Ry and Ry are both key-preserving, then there is a key-
preserving reduction Rg such that P [£] <z, P3[£].

Reductions among security notions are key-preserving. We use later the prop-
erty that all the straightforward black-box reductions between the classical

4 A similar class of reductions for RSA encryption called simple reductions was recently
considered by Brown [7].
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security notions for £ such as IND-CCA[£] < IND-PCA [€] and IND-CPA €] <
OW-CPA [£] and so forth [I], are key-preserving.

3.2 One-Wayness Versus Chosen-Ciphertext Security
The following reformulates the observation made by Williams [22].

Theorem 1. Let & be a single-key factoring-based encryption scheme. If there ex-
ists a polynomial key-preserving black-box reduction R such that FACT [£€.keygen]
<r OW-CPA [£], then UBK-CCA [€] is polynomial.

Proof. The main idea of the proof is basically a one-line statement and follows
the reasoning of [22/13]. Let R be such a key-preserving reduction algorithm, i.e.
an algorithm that factors a modulus n randomly selected by £.keygen with non-
negligible probability eg and extra time 7 given black-box access to an adversary
A breaking OW-CPA [£] with probability at least e. We construct an adversary
M against UBK-CCA [£].

Upon reception of the public key n in the UBK-CCA game, M runs R on input
n and uses the decryption oracle to simulate the OW-CPA adversary. Since by
definition the decryption oracle decrypts any ciphertext with probability 1 > ¢
in one elementary step, the simulation of A is perfect for any € € (0,1). The
simulation complies to the definition of R because R is key-preserving. It is
therefore crucial that this property holds otherwise M can by no means satisfy
the queries R makes to A.

R eventually returns the factorization of n with probability eg which M then
returns as output value. UBK-CCA [£] can therefore be broken with probability
at least e in extra time at most 7. O

3.3 Indistinguishability Versus Plaintext-Checking Security

Let us now consider IND-CPA [£]. We know that there is a key-preserving re-
duction IND-CPA[£] < OW-CPA €] and also that key-preservation is transi-
tive. Therefore Theorem [I] implies that there is no key-preserving reduction
FACT [€.keygen] <= IND-CPA [£] unless UBK-CCA [£] is polynomial. But precisely
because IND-CPA [£] is weaker than OW-CPA [£], a stronger incompatibility re-
sult can be found. We state:

Theorem 2. Let & be a single-key factoring-based encryption scheme. If there ex-
ists a polynomial key-preserving black-box reduction R such that FACT [€.keygen]
<x IND-CPA [€], then UBK-PCA [£] is polynomial.

Proof. Let us first describe in more detail the game played by a key-preserving
reduction R such that FACT [€.keygen] <z IND-CPA[£]. Given a modulus n,
R calls the adversarial oracle A breaking IND-CPA [£] as follows. When R calls
A(find,n), A outputs two plaintexts mg,m; € M,, of equal length. R then en-
crypts myp for b «— {0,1} as ¢, and calls A(guess, ¢p). A then returns its guess
b e {0,1} to R and Pr[b = b] > &. We may assume w.l.o.g. that R never calls
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A(guess, ¢) before calling A(find, n) first and always calls A(guess, ¢;) immedi-
ately after A(find,n), and that ¢, is always a proper encryption of mg or mj.
Let 2¢ be the total number of calls to A. Overall R returns factors(n) with
probability eg and extra time 7.

We construct a trivial meta-reduction M which converts the key-preserving
black-box reduction R into an adversary against UBK-PCA [€] and works with
identical success probability in similar time. M works as follows. Given a public
key n < &.keygen, M runs R on input n and simulates the distinguisher A using
the plaintext-checking oracle of the UBK-PCA game. When R calls A(find, n),
M returns two randomly selected plaintexts mg,m; < M, of equal length.
When R calls A(guess, ¢p), M sends (m1, ¢p) to the plaintext-checking oracle and
sends its output back to R (recall that given (m,c) € M,, x C,,, the plaintext-
checking oracle returns 1 if ¢ encrypts m and 0 otherwise). Eventually R stops
and M forwards the output of R. By definition, the plaintext-checking oracle
distinguishes plaintext-ciphertext pairs with probability one and M therefore
provides a perfect simulation of A to R for any ¢ € (0,1). Hence M outputs the
factors of n with identical probability ez in time 742€p(k) where p(k) = poly (k)
is the time needed to perform a random selection in M,,. a

3.4 Separation Results

Corollary 1. Let € be a single-key factoring-based encryption scheme. Unless
FACT [€.keygen] is polynomial, there is no polynomial key-preserving black-box
reduction FACT [€ keygen] < IND-CCA [£].

Proof. Assume that FACT [£.keygen] <%, IND-CCA [£] for some polynomial key-
preserving black-box (PKPBB) reduction R;. Since there exists a PKPBB reduc-
tion Ro such that IND-CCA[£] <r, OW-CPA [£], there must be a PKPBB re-
duction R3 such that FACT [€.keygen] <x, OW-CPA [€] by transitivity, resulting
in that UBK-CCA [£] is polynomial by Theorem[Il Moreover since IND-CCA [£] <
UBK-CCA €], one gets that IND-CCA[£] is polynomial and therefore that
FACT [€ .keygen] is polynomial as well. O

Similar impossibility results are found for other security notions such as
OW-CCA[£] and IND-PCA [€] using Theorem 21

The Typical Example of Rabin-SAEP. We illustrate the importance of Corol-
lary [ by deducing a uninstantiability result for Rabin-SAEP. We first recall
the definition of Rabin-SAEP [5]. Let s,,,So,s1 be security parameters and
k = sm+so+s1. H denotes a fixed-size hash function H : {0,1}51 — {0, 1}sm*50,
Here k plays the role of security parameter and the security proofs in [5] view
Sm, S0, S1 as polynomial functions of k.

Rabin-SAEP.keygen : Given 17, generate a (k + 2)-bit RSA modulus n = pq,
Ip| = |q| = [k/2] + 1, p= ¢ = 3mod 4 and n € [2F+1 2k+1 4 2F) The secret
key is factors(n) = (p, ¢) while the public key is n.
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Rabin-SAEP.encrypt : Given a public key n, the message space is M,, = {0,1}°™
and the random space is R,, = {0,1}*'. For (m,r) € M, x Ry, Enc(n, m,r) is
defined as (((m || 0%0) & H(r)) || )*> mod n. The ciphertext space is Cp, = Zy,.

Rabin-SAEP.decrypt : Given ¢ € C,, and (p,q), compute z, = cP+1/4 mod p
and z4 = clat)/% mod ¢. Output L if 212, # cmod p or zg # cmod g. Among
the four values CRT(+zp, £24), select the only one y such that y < n/2 and
y can be parsed as ((m ] 0%) @ H(r)) || r for some (m,r) € M,, X R,,. If this
fails or can be done for more than one value for y, output L. Otherwise
output m.

It is easily seen that Rabin-SAEP is a single-key factoring-based encryption
scheme as per the definition of Section [l We refer to [5, Section 4] for a proof
that Rabin-SAEP is chosen-ciphertext secure under the factoring assumption in
the RO model:

Theorem 3 (RO-model security of Rabin-SAEP [5]). Let us view H as a
random oracle. There exists a PKPBB reduction R such that FACT [Rabin-SAEP.

keygen] < IND-CCA [Rabin-SAEPH].

We now state that for any instantiation of H, Rabin-SAEP does not admit a
standard model counterpart of Theorem [3l This impossibility result comes as a
direct application of Corollary [l

Theorem 4 (Standard-model security of Rabin-SAEP). Assuming
FACT [Rabin-SAEP .keygen| is intractable, there exists no PKPBB reduction
FACT [Rabin-SAEP.keygen] <= IND-CCA [Rabin-SAEP].

Similar separations can be obtained for a wide range of factoring-based en-
cryptions which chosen-ciphertext security is shown to be equivalent to fac-
toring through key-preserving reductions in the RO model such as Rabin/
RW-SAEP[+]/OAEP[+]|[+]/REACT, EPOC-2 [I1], etc.

What Goes Wrong in the RO Model. Consider the meta-reduction M in the proof
of Theorem[Il M cannot make any appropriate use of a key-preserving reduction
R standing in the RO model. In a typical random-oracle-based reduction, the
random oracles of £ are simulated by R. This additional power is beneficial to
R which introduces some form of correlation between its own variables and the
responses of the simulated oracles. In a sense, R is not totally black-box i.e. does
not only rely on the input-output behavior of the OW-CPA adversary because
R controls the interactions between the adversary and the random oracles to
increase its success probability.

In the chosen-ciphertext security game, however, the decryption oracle makes
implicit calls (i.e. not controllable by any simulator) to the random oracles.
Therefore, the meta-reduction cannot influence the decryption procedure by
mimicking R and consequently, can by no means correlate the internal vari-
ables of the decryption oracle to its own variables the same way R does with the
OW-CPA adversary. This explains why the RO model is unaware of incompati-
bilities in a general sense.
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4 Extended Results for Non-malleable Key Generation

What we are after in this section is a way to strengthen the previous impossibility
results. Recall we had to restrict the scope of Theorems[Iland 2lto key-preserving
security reductions because the meta-reduction M was unable to simulate the
adversary A when R makes oracle calls to A with arbitrary moduli. Our approach
is to explicitly assume, as a property of the key generation of £, that calling
A with n’ # n is essentially of no help to R anyways. It appears that one
faces definitional options when capturing this in a formal way: what we provide
hereafter is the simplest definition that is strong enough for our purposes. This
in turn allows us to consider arbitrary black-box reductions at the expense of
making a complexity assumption on the key generation of £.

4.1 Defining Non-malleable Generators

Intuition. An instance generator Gen is said to be malleable if factoring a ran-
domly selected instance n « Gen(1¥) becomes substantially easier when given
repeated access to an oracle which factors other instances n’ # n for n’ € PKy.
A typical example of malleability is when PK, contains integers of variable size
and number of prime factors. It is indeed trivial to factor n given an oracle that
factors n’ = an if it happens that both n and n’ are proper elements of PKj.
We observe that most factoring-based cryptosystems define instance generators
which precisely tend to avoid this malleability property by construction (see
Section [Z). What we need for our purposes is to define non-malleability in a
strong sense.

Definition. To properly capture non-malleability, we define two games in which
a probabilistic algorithm R attempts to factor n « Gen(1¥) given access to
an oracle A(n,aux) solving with probability one some computational problem
reducible to FACT [Gen]. Here, A models the computational resources R has
access to and aux stands for any auxiliary input given to the oracle A depending
on how A is specified. We may write A(n,-) instead of A(n,aux) to notify that
aux is chosen freely and arbitrarily by R when A is called. Since we impose that
oracle A be perfect, we can abuse notations and identify A to the problem solved
by A. A typical example of computational resources modelled by A is when A
is polynomial (in which case R is given no extra power), but one may consider
problems reducible to FACT [Gen] that do confer a computational advantage to
R, such as distinguishing quadratic residues modulo n, extracting e-th roots
for ged(e,¢(n)) = 1 and so forth. In any case, we require A to be perfectly
reducible to FACT [Gen] in polynomial time, that is, for any n € PK; and any
admissible value for aux, A(n,aux) must be solvable with probability one in
time t 4 = poly (k) given factors(n). In Game 0, the success probability of R is
defined as

SuccSame O (R, A, 7,0) = Pr [n — Gen(1¥F) : RAM) () = factors(n)]
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where the probability is taken over the random tapes of R and A, R runs in
extra time at most 7 and makes at most ¢ queries to A(n, ). We further define

Succgme 0 (4, 7, 0) = max Succg™e O (R, A, 1,0)

where the maximum is taken over all probabilistic algorithms R playing Game 0.
This can be interpreted as the success probability of the best reduction that
makes use of A(n,aux) to factor n for the given reduction parameters (7, ¢). In
Game 1, the reduction R is given, in addition to A, access to an auxiliary oracle
FACT(-) that factors integers n’ € PKy \ {n} with probability one. Its success
probability Succgj;me Y (R, A,7,0) is then

Pr [n — Gen(lk) : RA(n")’FACT(')(n) = factors(n)]

where the probability is taken over the random tapes of R and A, R runs in extra
time at most 7, makes ¢4 calls to A(n,-) and feact calls of the type FACT(n')
with n’ € Py, \ {n} such that £4 + ¢ract < £. Let us define

1 1
Succgme 1 (A, 7, 0) = max Succg™e (R, A, 7,0)

where the maximum is taken over all probabilistic algorithms R playing Game 1.
This measures the success probability of the best reduction that uses simulta-
neously oracles A(n, ) and FACT(-) to factor n in time 7 and totalling no more
than ¢ oracle calls. We finally define the malleability of Gen as

Agen (1,0) = Ac&%}'{[Gen] Succgame 1 (4 7, ¢) — Succ&®™e O (A, 7.0) | ,

where the maximum is now taken over all computational problems A perfectly
reducible to FACT [Gen] in polynomial time.

Remark 1. It is easily seen that Agen (7,0) = 0 for any 7 > 0.

Definition 1 (Non-Malleable Instance Generators). We say that an in-
stance generator Gen is non-malleable when Agen (7,£) remains polynomially neg-
ligible in k when 7 = poly (k) and ¢ = poly (k).

Remark 2. The purpose of Game 0 is to include all key-preserving reductions R
such that FACT [Gen] <z A. Since the success probability e of the adversarial
oracle plays no role in the proofs of Theorems[Iland 2] these can be reformulated
as follows. For any positive integers 7, ¢:

Th.I Succy faygen (OW-CPA[E], 7, ¢) < Succ (¢-UBK-CCA €], 7)

Th.2: succ§_1§§ggn (IND-CPA [€],7,£) < Succ ((-UBK-PCA [£] , 7+ 20p(k))
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4.2 A Fundamental Lemma

We now come back to our earlier discussion about extending the scope of The-
orem [Il and dealing with R calling A with arbitrary moduli n’ # n. The oracle
calls R makes to A are now of two types: calls with the same modulus n (key-
preserving calls) and calls with n’ # n (non-key-preserving calls). Our definition
of non-malleability allows us to limit the computational advantage conferred to
R by its non-key-preserving calls.

Lemma 1. Let Gen be an instance generator and let A be a computational prob-
lem perfectly reducible to FACT [Gen] in time t 4. Then for any positive integers
7,0 and any € € (0,1),

Succ (FACT [Gen] <= A, 7,¢,0) < Succgj;me YA T+ t4,0) .

Proof. Recall that A denotes a computational problem here. Assume R (7,¢,{)-
solves FACT [Gen] < Ai.e. factors n < Gen(1*) in extra time 7 with no more than ¢
calls to an oracle Ax solving A with probability €. Let eg be the success probability
of R. We construct an algorithm M which plays Game 1 with respect to a perfect
oracle A for A and succeeds with identical probability and similar running time.
Algorithm M works as follows. Given a randomly selected modulus n « Gen(1%),
M runs R on input n. Now when R calls Ag(n, aux), M calls Aprq(n, aux) and
forwards the output to R. When R calls Ag (', aux) for n’ € PKy \ {n}, M calls
FACT(n') to get factors(n’) and solves A(n’, aux) in time ¢ 4. M then returns the
result to R. R eventually stops and M returns the output of R. The simulation
of Ag is perfect for any ¢ € (0,1). M requires extra time at most 7 + £ - t 4 and
makes at most £ calls to oracles Axq and FACT (-) altogether. O

4.3 Extended Separation Results

Theorem 5. Let £ be a single-key factoring-based encryption scheme and
assume &.keygen is non-malleable. If FACT [€.keygen] < OW-CPAIE] then
UBK-CCA [£] is polynomial.

Proof. Let us consider A = OW-CPA [€]. Obviously A is perfectly reducible to
FACT [€ .keygen] since given any n € PKj, aux = ¢ € C,, and factors(n), A(n, aux)
is solved by computing m = Dec(factors(n),c) in time t4 = poly (k). Applying
Lemma [T, we get for any 7,¢ and ¢ € (0,1):

Succ (FACT [€.keygen] <= OW-CPA €], 7,¢,¢)

< Succg Kaygen (OW-CPA[E], 7 + £-poly (k) , €)

< Succg Kaygen (OW-CPA[E], 7 + £-poly (k) , €) + Agen (7 + £-poly (k) , )

< Succ (¢-UBK-CCA[E], 7 + £-poly (k)) + Agen (7 + £-poly (k) , £) .

We now extend asymptotically the above to 7,¢ = poly (k). Since &.keygen is
non-malleable, the malleability term Agen (7 + £-poly (k) , £) remains negligible.
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Since Succ (FACT [£.keygen] < OW-CPA[€], T,¢, ) is non-negligible by assump-
tion, Succ (¢-UBK-CCA [£], 7 + £-poly (k)) must be non-negligible as well, thereby
giving the result. a

The same proof technique applies to IND-CPA [£] and shows that there exists no
reduction FACT [£.keygen] <= IND-CPA [€] unless UBK-PCA [£] is polynomial or
£ .keygen is malleable. Based on a reasoning similar to the proof of Corollary [T,
we deduce from these incompatibilities that:

Corollary 2. Let € be a single-key factoring-based encryption scheme and as-
sume E.keygen is non-malleable. There is mo polynomial black-box reduction
FACT [€ .keygen] <= IND-CCA [€] unless FACT [€ keygen] is polynomial.

To exemplify Corollary[2l we provide this extended impossibility result for Rabin-
SAEP.

Theorem 6 (Standard-model security of Rabin-SAEP, revisited). As-
sume Rabin-SAEP .keygen is non-malleable. Then Rabin-SAEP admits no in-
stantiation in the standard model which is chosen-ciphertext secure under the
factoring assumption i.e. for any instantiation of H,

IND-CCA [Rabin-SAEP] # FACT [Rabin-SAEP.keygen| .

Similar uninstantiability results hold for single-key factoring-based encryption
schemes which chosen-ciphertext security is shown to be equivalent to factoring
in the RO model. Again, these stronger separations are effective only when the
underlying key generation is non-malleable. In other words, either these encryp-
tion schemes do separate the RO model from the standard model in a very strong
sense, or their key generation must be malleable along the lines of Definition [

5 Overcoming Uninstantiability

Keyed Paddings. At first look, including some additional key material such as
a random string in the public key seems to invalidate our impossibility results
completely. Typically the extra parameter can serve as a function index in a
keyed family of hash functions. This seems to be an efficient countermeasure
for single-key factoring-based encryption making use of encryption paddings
which, unlike SAEP[+]/OAEP[+][+], Fujisaki-Okamoto and REACT, include
keyed hash functions.

Encryption Twinning. Naor and Yung [I7] and Dolev, Dwork and Naor [10]
suggested transformations which when applied to IND-CPA-secure encryptions
such as Blum-Goldwasser [4] or Chor-Goldreich [§] may lead to IND-CCA-secure
schemes under the factoring assumption. The transformed schemes use pub-
lic keys containing two or more independently generated moduli with respect
to the basic scheme. This paradigm makes it possible to generically construct
a larger class of factoring-based cryptosystems which IND-CCA-security can
possibly be proven equivalent to factoring, thereby escaping all incompatibil-
ity results described earlier. We comment that the cornerstone of Theorem [I]
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resides in that the decryption oracle provided in the UBK-CCA game can serve
as a factoring algorithm when interfaced with the black-box reduction R. We
now see how encryption twinning prohibits such a use of the decryption ora-
cle. The public key in a Naor-Yung-transformed encryption scheme NY(E) is
(n1,n2,7) where nq,ne «— E.keygen and r is a random string used to gen-
erate NIZK proofs during encryption. An encryption of m € M,, N M,, is
(¢c1 = Enc(ny,m,r1),ca = Enc(ng, m,r3),m) where 7 is a proof that ¢; and ¢
encrypt the same plaintext. Now assume (as typically the case with single-key
factoring-based encryption) there exists an efficient way to generate a random-
looking ¢; such that its decryption Dec(factors(nq),c1) leads to an immediate re-
covery of factors(ny). In a typical reduction R from FACT [€.keygen] to breaking
the OW-CPA security of NY (), R takes as input a modulus n; « &.keygen(1¥)
but generates by itself the second key pair (ns, factors(nsy)) « &.keygen(1¥) and
to constitute a public key pk = (n1,ng,r). Since R fully controls the generation of
ng and 7, R can use the simulator of the underlying NIZK proof system to create
a valid encryption ¢ = (¢1, c2, m) for a random ¢;. Calling the OW-CPA adversary
will then provide Dec(factors(ni),c1), thus allowing R to factor n;. The meta-
reduction M playing the UBK-CCA game against NY (&) however, is given some
public key PK = (N7, No, R) and a decryption oracle implicitly parameterized by
PK. Since R takes as input a single modulus and generates by itself the rest of the
public key to be given to its adversarial oracle, M cannot, even if R is run on in-
put Ny, use the decryption oracle to answer the request(s) ((N1,n2,7), (¢1, c2, 7))
made by R because Pr[ng # N2 V r # R] is overwhelming.

6 Are Key Generators Non-malleable?

Our extended impossibility results apply to single-key encryption schemes based
on non-malleable key generation. We conjecture that most instance generators
are in turn non-malleable and expect to see further research works based on
this property in the future. A possible improvement of this work would be to
give a formal proof of non-malleability for commonly referred generators such as
RSA-3 or Sophie-Germain using computational number theory. Another issue is
the design of non-trivial examples of malleable key generators.
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