Improved Collision Search for SHA-0

Yusuke Naito!, Yu Sasaki', Takeshi Shimoyama?,
Jun Yajima?, Noboru Kunihiro!, and Kazuo Ohta!

! The University of Electro-Communications, Japan
{tolucky, yu339, kunihiro, ota}@ice.uec.ac.jp
2 FUJITSU LABORATORIES LTD
{shimo, jyajima}@labs.fujitsu.com

Abstract. At CRYPTO02005, Xiaoyun Wang, Hongbo Yu and Yiqun
Lisa Yin proposed a collision attack on SHA-0 that could generate a col-
lision with complexity 23° SHA-0 hash operations. Although the method
of Wang et al. can find messages that satisfy the sufficient conditions
in steps 1 to 20 by using message modification, it makes no mention of
the message modifications needed to yield satisfaction of the sufficient
conditions in steps 21 and onwards.

In this paper, first, we give sufficient conditions for the steps from
step 21, and propose submarine modification as the message modifica-
tion technique that will ensure satisfaction of the sufficient conditions
from steps 21 to 24. Submarine modification is an extension of the multi-
message modification used in collision attacks on the MD-family. Next,
we point out that the sufficient conditions given by Wang et al. are not
enough to generate a collision with high probability; we rectify this short-
fall by introducing two new sufficient conditions. The combination of our
newly found sufficient conditions and submarine modification allows us
to generate a collision with complexity 23 SHA-0 hash operations. At
the end of this paper, we show the example of a collision generated by
applying our proposals.

Keywords: SHA-0, Collision Attack, Message Modification, Sufficient
Condition.

1 Introduction

SHA-O0 is the hash function issued by NIST in 1993 [5]. All hash functions must
hold 3 properties: Pre-image Resistance, Second Pre-image Resistance and Col-
lision Resistance. Collision Resistance means that it is very hard to find z, y such
that © # y and H(x) = H(y), where H(-) is any hash function. Collision Resis-
tance is more difficult to keep than any other property. The Collision Resistance
of SHA-0 was broken recently [2]. This paper uses the term Collision Attack to
refer to attacks that break Collision Resistance.

The first collision attack on SHA-0 was proposed by F. Chabaud and A. Joux
in 1998 [3]. They employed differential attack and used XOR as the differential.
After that, E. Biham and R. Chen improved [3], and found near collisions [IJ.
Near collision means z,y such that x # y and H(z), H(y) differ only by a small

X. Lai and K. Chen (Eds.): ASTACRYPT 2006, LNCS 4284, pp. 21-[38] 2006.
© International Association for Cryptologic Research 2006

22 Y. Naito et al.

number of bits. At the rump session of CRYPT 02004, the first announcement of
finding a collision of SHA-0 was made by A. Joux [4]. Details of this attack were
presented in EUROCRYPT2005 by E. Biham, R. Chen, A. Joux, P. Carribault,
W. Jalby and C. Lemuet [2]. In 2004, Wang proposed an independent collision
attack method on SHA-0 [I0/TI]. Wang’s method uses the differential attack ap-
proach in which numerical operations are used as the differential. Subsequently,
X. Wang, H. Yu and Y. Lisa Yin proposed an improved version of Wang’s attack
[14]. This method has complexity of 23° SHA-0 hash operations, and is the most
efficient collision attack method proposed so far.

The method of Wang et al. can be divided into 2 phases. In the pre-computation
phase, a differential path and conditions that indicate that a collision is possi-
ble are constructed. In this paper, we call these conditions “sufficient conditions”.
Sufficient conditions define the triggers for ending collision search. In the collision
search phase, an input message satisfying all sufficient conditions is searched for.
If this message is found, a collision can be generated. In this phase, message modi-
fication is used to efficiently find a message that satisfies the sufficient conditions.

According to Wang et al., in the case of SHA-0, a message satisfying sufficient
conditions from steps 1 to 20 can be located efficiently by using message modi-
fication. The specification of SHA-0 states that the messages used in steps 1-16
are input messages, whereas messages used in steps after 16 are determined by
message expansion as is defined by the specification of SHA-0. In the method
of Wang et al., messages satisfying the sufficient conditions in steps 1-16 can,
with probability 1, be generated by using message modification. Since steps 1-16
are not affected by the limitations placed on message expansion, it is possible to
choose values of chaining variables to satisfy all sufficient conditions, and then
calculate messages that can yield these chaining variables. Regarding the suffi-
cient conditions in steps 17-20, if these conditions are not satisfied and message
modification is executed, these sufficient conditions are satisfied with probabil-
ity of almost 1. Since the steps from 17 are affected by message expansion, the
message modification in steps after 16 proposed by Wang et al., is executed by
generating the differential in the step not affected by message expansion. Since
this differential (We call this differential “transmission differential”) is trans-
ferred to subsequent steps, sufficient conditions are satisfied by the transferred
differential. We call this method “transmission method”. Without using these
methods, the probability that a sufficient condition is satisfied in 1 time is é
For example, suppose there exists 1 condition in step ¢ and the complexity to
calculate all necessary operations up to step i is j steps. In this case, the number
of steps needed to ensure the success of step i is 25 (on average). By using these
methods, if the complexity of message modification is p steps, the number of
steps needed to ensure the success of step ¢ is j + ; - p (on average). Since we
choose message modification such that the complexity is p < j, message modi-
fication reduces the complexity by j — % - p steps. Therefore, we can efficiently
locate a collision by using message modification. Note that message modifica-
tion in the steps after 16 is particularly important in reducing the complexity of
collision search.

Improved Collision Search for SHA-0 23

Our Results
Our paper makes 2 contributions.

1st Result: Wang et al. have not proposed message modification to satisfy
the sufficient conditions from step 21; their solution is random search. In
this paper, we propose message modification for steps 21-24. We call this
proposal “submarine modification”. It takes advantage of the ideas of multi-
message modification for the MD-family (we call multi-message modification
for the MD-family “cancel method”) and transmission method (Details are
described below). Since the same discussion about the complexity of message
modification made with regard to the proposal of Wang et al., discussed
above, can be applied to submarine modification, submarine modification can
more efficiently satisfy the sufficient conditions than random search. Since
the structure of the MD-family or SHA-1 is very similar to that of SHA-0,
submarine modification may also be applicable to those hash functions.

2nd Result: We show that the sufficient conditions given by Wang et al. are
missing two conditions, and then describe the missing sufficient conditions.

From the second result, even if a message satisfying all sufficient conditions
given by Wang et al. is found, collision search does not always succeed. Since
their conditions are two short, their method will fail with probability i' We
identify the two missing sufficient conditions and use them with our submarine
modification proposal to search for a collision. Considering the fact that the
number of sufficient conditions in steps 21-24 is 4 and given the complexity of
submarine modification, a computer experiment finds that our method finds a
collision with complexity 236 SHA-0 hash operations. The PC used had a Pen-
tium4 3.4GHZ CPU(OS: Linux 2.6.9 (Fedora Core 3, Red Hat 3.4.2), Compiler:
gece 3.4.2-1386). In the fastest case, a collision was found in 8 hours. The average
time to find a collision was roughly 100 hours.

Overview of Our Main Idea: Submarine Modification

Submarine modification uses two ideas of message modifications, “transmission
method” and “cancel method”. We can satisfy sufficient conditions for up to
step 24 by using submarine modification.

“Transmission method” is the method that can satisfy sufficient conditions
for up to step 21 of SHA-0 (Wang et al. apply transmission method to sufficient
condition for steps 17-20. We confirm that transmission method is applicable to
satisfy sufficient conditions for steps 17-21). Namely, transmission method can
satisfy sufficient conditions for 5 steps from a start step of transmission.

“Cancel method” is the method that uses the idea of the local collision. The
local collision is the method where we create a differential and offset the differ-
ential in within several. We construct the method that inputs differentials and
offsets the effects of these differentials before step 16 such that the differential
(we call this differential “latent differential”) appears again from step 17 due
to message expansion after the differential is offset. Differentials don’t appear
for steps between the step where the differential offsets and the step where the

24 Y. Naito et al.

latent differential appears. We call these steps “latent period”. We denote the
number of steps in latent period after step 17 as t. Influence of differentials cre-
ated before the step where the latent differential appears does not occur. Cancel
method is the method with which the sufficient condition for the step where
the latent differential appears is satisfied by using the latent differential. We use
the idea of cancel method in order to allow the start step of transmission to
locate between step 17 to step 19. Note that cancel method itself does not use
transmission of the latent differential.

The method that we propose in this paper satisfies sufficient conditions for up
to step 24. If we use transmission method to satisfy sufficient conditions for up
to step 24, we need to extend the range where the transmission differential can
be started from step 16 to step 19. We can realize it by using the idea of cancel
method. Since maximum number of latent period after step 17 for SHA-0 is t = 3,
we can extent the range of the start step of transmission from step 16 to step
19 if we adopt the transmission differential as the latent differential. The latent
differential can be created by using cancel method. Since there exists no influence
for satisfied sufficient conditions in latent period by using cancel method, and we
can satisfy sufficient conditions for 5 steps from the start step of transmission
by applying transmission method. Since this method takes advantage of the
differentials whose local effects are cancelled in the earlier steps, we call this
message modification technique “submarine modification”.

2 Structure of SHA-0[5]

SHA-0 is a hash function issued by NIST in 1993. SHA-0 has the Merkle-
Damgard structure, therefore, it repeatedly applies a compression function. SHA-
0 input is an arbitrary length message M, and SHA-0 output is 160 bit data
H(M). If the length of the input message is not a multiple of 512, the message is
padded to realized a multiple of 512 bits. The padding process is M* = M||10...0.
First, 1 is added, and then as many 0’s as are needed. Padded message M™ is
divided into several messages M; each 512 bits long (M* = (M ||Ma]|...||My)).
These divided messages are input to the compression function.

h1=compress(Mi,IV) — ha=compress(Ma,h1) — - -+ — hn=compress(Mn, hn—1)
H(M) = hy,

In this paper, we call the calculation performed in a single run of the compression
function 1 block. I'V in the above expression is defined as (ag, b, co, do,€0) =
(0x67452301,0xe f cdab89,0x98badc f €,0x10325476,0xc3d2el f0). We next explain
the structure of the compression function of SHA-0. All calculations in this are
32-bit. In this paper, we exclude the description of “mod 232”.

Procedure 1. Divide the input message M; into 32 bit messages mg, my, ..., ms.
Procedure 2. Calculate myg to m7g by m; = m;_3 & m;—_g ® mi_14 & M;—16

Improved Collision Search for SHA-0 25

Procedure 3. Calculate chaining variables a;, b;, ¢;, d;, e; in step @ by the fol-
lowing procedures.

a; = (ai—1 <& 5) + f(bi—1, ci1,di—1) + €i—1 +mi—1 + ki1,
b =a;_1,¢;, =b;_1 &« 30,d; =c;_1,6;, =d;i_1

“< j” denotes left cyclic shift by j bits. Repeat this process 80 times.
Initial values ag, bg, cg, do, €9 for the compression function of the first block
are IV. ag, by, cg, dp, €9 for the compression function from the second block
are the output values of the previous block. Steps 1-20 are called the first
round. Steps 21-40, 41-60, and 61-80 are the second, third, and fourth rounds,
respectively, k; is a constant defined in each round. Function f is a boolean
function defined in each round. The specifications of k; and f are shown in
Table 1.

Table 1. Function f and Constants k in SHA-0

round function f constant k;
1 (bAc)V (=bAd) 0x5a827999
2 bdchd 0x6ed9ebal
3 |(bAc)V(eAd)V (dAD)| 0x8f1lbbede
4 bdchHd 0xca62cld6

Procedure 4. (ag+ aso, by + bso, co + ¢s0, do + dso, €0 + esp) is the output of the
compression function.

3 Collision Attack by Wang et al.[8/9/14/15]

The method of Wang et al. is based on differential attack which uses subtraction
as the differential. If a collision is found on hash function H(-), that is, M, M’
such that H(M) = H(M'), M # M’ is found, the differential values of M and
H(M) become AM = M'— M #0, AH(M,M')=H(M') — H(M) =0. Let
and 2’ be certain values. We write 2’ — x as Az, and we call Az the differential
value of z. Since the differential value of input message AM # 0, differential
values of the chaining variables of the hash function are not O.

The method of Wang et al. first notes differential values. It determines the
differential values of the chaining variables and the differential value of the in-
put message so that the output differential value of hash function AH (M, M’)
becomes AH(M,M') = 0 and the differential value of the input message be-
comes AM # 0. However, even if we find a pair of messages M, M’ that satisfy
AM, the output differential value is not always H(M’) — H(M) = 0. This can
happen since the differentials of chaining values from M and M’ do not always
satisfy the differential values of the chaining variables. Therefore, we need to set
conditions for satisfying the differential values of the chaining variables. We call

26 Y. Naito et al.

these conditions “sufficient conditions”. These procedures (deciding the differen-
tial value of the input message, differential values of the chaining variables and
sufficient conditions) are pre-computations.

We start collision search by using the differential value of input message AM
and sufficient conditions decided in the pre-computation phase. First, we search
for message M satisfying all sufficient conditions. Next, we calculate M’ = M +
AM. M and M’ thus become collision messages, that is, H(M) = H(M').
In order to efficiently locate a message that satisfies all sufficient conditions,
message modification can be used.

3.1 Message Modification for SHA-0 and MD-Family

First, we explain message modification for SHA-0, and clarify the range wherein
message modification can be applied. Next, since we use the idea of cancel
method, which is originally proposed for MD-family, as part of the proposed
submarine modification, we explain the procedures of cancel method.

Message Modification for SHA-0 [14]
Message modification for SHA-O can generate messages satisfying all sufficient
conditions in steps 1-16 with probability of 1. This procedure is shown below.

— Message Modification for step i (1 <i < 16):
1. Generate a; satisfying all sufficient conditions for a;.
2. Calculate m;_q1 «— a; — (ai,1 K 5) — f(bi,hCi,h difl) —ei—1 —ki_1.

Transmission method was proposed by Wang et al as follows. These modifications
are executed when sufficient conditions are checked and found to be not satisfied.
In message modification for steps 17-20, differentials are generated in order to
create a differential on a bit where the sufficient condition that we want to satisfy
exists. From the specification of SHA-0, since we can freely choose messages only
for steps 1-16, we input the differential on the message used in up to step 16.
We then transfer this differential to step 17, which yields the differentials that
impact the targeted bits in the subsequent steps.

Multi-message Modification for MD-Family [8/9]

Multi-message modification for the MD-family (which we call cancel method)
involves modifying messages to satisfy the sufficient conditions from step 17 of
the MD-family. In cancel method, differentials are input in steps which are not
affected by message expansion, and then cancel the impact of those differentials.
The differentials that are input appear in step 17 and later steps due to mes-
sage expansion, and this leads to satisfaction of the sufficient conditions. Cancel
method does not use the technique where the latent differential transfers.

3.2 Collision Search for SHA-0O

Collision search is done to locate a message that satisfies all sufficient condi-
tions; it involves the use of 2 block messages. The sufficient conditions on the

Improved Collision Search for SHA-0 27

first block are set in order to control the differentials of the chaining variables
on the second block. Since all conditions are conditions of output values, they
cannot be satisfied by message modification. Therefore, we don’t execute any
message modification when searching for a message that satisfies all sufficient
conditions of the first block. Fortunately, since the complexity of message search
in the first block (2'*SHA-0 operations) is much smaller than that of the sec-
ond block (23SHA-0 operations), the complexity of the first block does not
impact overall complexity. Collision search on the second block is done by using
message modification. Furthermore, the early stopping technique can be used
to efficiently find a message that satisfies the sufficient conditions. In the early
stopping technique, after step 24 is calculated, the sufficient conditions up to
step 24 are checked to determine whether they are satisfied or not. If all con-
ditions are satisfied, steps from 25 are calculated. Otherwise, collision search is
repeated from the first procedure. It is important to remember that this method
still cannot find a message that is assured of satisfying the sufficient conditions
in steps 21-24 with probability of almost 1. Submarine modification, proposed
in this paper, can satisfy the sufficient conditions in steps 21-24 with probability
of almost 1.

Another problem of the existing method is that it is impossible to execute the
algorithm proposed by Wang et al. since their description of it is incomplete. We
rectify this omission in Appendix B.

4 New Message Modification Techniques

The method of Wang et al. uses message modification to efficiently locate a
collision. Their method can efficiently generate messages that satisfying the suf-
ficient conditions up to step 20. However, Wang et al. did not propose message
modification for subsequent steps. This section studies message modification,
and proposes message modification so as to satisfy the sufficient conditions in
steps 21 to 24. In this paper, we call this modification submarine modification.
Since the structure of SHA-0 is very similar to those of the MD-family or SHA-1,
submarine modification may also be applicable to those hash functions.

4.1 Main Idea of Submarine Modification

Transmission method can be applied to satisfy sufficient conditions for 5 steps
from the start step of transmission. If we use transmission method to satisfy
sufficient condition for after step 22, we need to extend the range where the
transmission differential can be started after step 17. Therefore, we use the idea
of cancel method in order to extend the range where the transmission differential
can be started. If we use the latent differential as the transmission differential, we
can extend the range where the transmission differential can be started to step
19 followed by the 5 steps. In the case of SHA-0, the maximum number of latent
period after step 17 is ¢t = 3 B Asa result, we can satisfy sufficient conditions

1 'We confirm the number of applicable steps by a computer experiment.
2 By considering a local collision and message expansion, we can find ¢t = 3.

28 Y. Naito et al.

for up to step 24 by combining ideas of cancel method and transmission method.
We use the idea of cancel method to create the latent differential for steps 17-19.
Since there is no influence for satisfied sufficient conditions in latent period by
using cancel method, we can satisfy sufficient conditions for 5 steps from the
start step of transmission by applying transmission method. A brief explanation
of submarine modification is shown in Figure 1.

Step Differential
i da=2 Input a differential to m, ;

i+l Ob=2
Execute procedures canceling the differential

i+5 0

17 Differentials of chaining values are 0
5 0_ ok Appear the differential

* asl_C()rrect from the message expansion

sufficient condition

Fig. 1. Outline of Submarine Modification

Remark. In this paper, we apply submarine modification to only the case of
steps 21-24. However, submarine modification can be also applied to steps 17-20.
We want to note that submarine modification is not limited to only the case of
steps 21-24.

4.2 How to Construct Submarine Modification

Submarine modification involves inputting and offsetting differentials and trans-
ferring differentials. The procedure of submarine modification is as follows:

1. Decide differentials that satisfy a target sufficient condition in step j(j > 17)
by considering the transfer of differentials.(The idea of transmission method)

2. Decide the method for inputting and offsetting differentials before step 16
to yield the necessary differentials in step j.(The idea of cancel method)

4.3 Proposal of Submarine Modification

There are 4 sufficient conditions from steps 21 to 24: ag14 = ag0,4 (Or az1 4 #
a20,4), a22 2 = M21,2,022,4 = (21,4 (or a22 4 #* a21,4), a23.2 = M22.2. In this section,
we propose message modification to satisfy each of these sufficient conditions.

Theorem 1. Suppose we set following conditions as Extra Conditions. ass =
ms.6,Me,11 7 M5,6,M7,6 = Ms6,07,4 = 0,a84 = 1,m10,4 # mse. If we modify
the message as shown below, the sufficient condition a1 4 = ag04 (0T a21.4 #
ag0,4) s satisfied with probability of almost 1.

5 10 5 3
ms < ms @ 2°,mg < Mg @ 2, my < my @ 2°,m1g < mio D 2

Improved Collision Search for SHA-0 29

In order to satisfy extra conditions, we generate messages that satisfy these
extra conditions in advance by a method similar to that used to satisfy the
sufficient conditions.

Proof. We explain the change in each chaining variable Theorem 1 is executed
in every step.

Step 6. In this step, differential dms = 25 is input. Here, 6z is the differential
created by message modification on chaining variable z. In this step, ag is
calculated as follows:

ag = (a5 < 5) + f(bs, c5,ds) + e5 + ms + ks.

After this equation is calculated, dag becomes dag = +2° because dms =
+2°. Since as,6 = M3 is set as the extra condition, dag = +25 does not
trigger differential carry. By this condition, since dms = £2° does not cause
carry in ms, and the sign of dag and dms ¢ are the same, which confirms
that no carry occurs.

Step 7. In step 7, a7 is calculated as follows:

a7 = (ag < b) + f(bg, cs,ds) + es + me + kg.

To ensure daz; = 0, we cancel dag = +2° by dmg = £2'°. Since mg 11 # ms 6
was set as the extra condition, the sign of dag = £2° and the sign of dmg =
4210 become opposite, and they cancel each other. Due to this condition,
in the case of ms6 = 0, mg,11 becomes mg 11 = 1. In this situation, ms¢
changes from 0 to 1 because of the differential, and msg ;1 changes from 1
to 0. Since we have ensured that no carry occurs, dms and dmg become
dms = 25 and dmg = —2'°, respectively. Since dms = 2°, Jag becomes
dag = 2°. Therefore, da; = 0 from dag = 2° <« 5 = 2! and dmg = —2'°.
In the case of ms = 0 and mg 11 = 1, a similar analysis finds that day is
assured of being 0.
Step 8. In step 8, ag is calculated as follows:

ag = (a7 K 5) + f(b'r, cr, d7) +e7+m7+ kr.

To ensure dag = 0, we cancel 6b; = £2° by dm7; = £2°. Since mr 6 = ms 6
was set as the extra condition, m7 s = 0 when ms ¢ = 0. In this situation,
ms, ¢ changes from 0 to 1, and my7 ¢ changes from 0 to 1. Since we have ensured
that no carry occurs, dms and dm; become dms = 2° and émy; = 2°. Since
dms = 2° dag = 2°, that is, dby = 2°, respectively. Since function f is
f(br,er,d7) = (br Ner) V (mbr Adr), and c76 = 0,d7g = 1 are ensured to
be satisfied by the sufficient conditions; the 2nd bit of f(b7,c7,d7) before
differential input is 1, and the 2nd bit of f(b7, c7,dr) after differential input
is 0. Therefore, 0 f (b7, c7,d7) becomes —2° and is canceled by dmy = 2°. As a
result, dag becomes dag = 0. In the case of m7 ¢ =1 and ms5 ¢ = 1, a similar
analysis confirms that dag is assured of being 0.

30 Y. Naito et al.

Step 9. In step 9, ag is calculated as follows:
ag = (ag <& 5) + f(bs, cs,ds) + es + mg + ks.

Since a7,4 = 0 is set as the extra condition, we can cancel dcg = +23 from the
property of function f. Since the function f is f(bs, cs,ds) = (bgAcg)V (—bs A
ds), if b874 = 07 the 4-th bit of f(bg, Cs, ds) is equal to d874, and if 6874 = 1, the
4-th bit of f(bs, cs, ds) is equal to cg 4. Therefore, since dcg = £23, §cg = 423
is canceled by setting the extra condition a7 4 = 0, that is, bg4 = 0. As a
result, dag becomes 0.

Step 10. In step 10, ajg is calculated as follows:

a1p = (ag < 5) + f(bg, co,dg) + €9 + mg + ko.

Since ag 4 = 1 is set as the extra condition, we can cancel ddy = +23 from
the property of function f. This basically follows Step 9.
Step 11. In step 11, aq1 is calculated as follows:

a1 = (a0 <« 5) + f(bio, c10, d1o) + €10 + mio + k1o-

To ensure da;; = 0, we cancel dejp = £23 by dmio = £23. Since Mmio4 7#
ms,6 is set as the extra condition, mq9,4 becomes myp.4 = 1 when ms¢ = 0.
In this situation, ms ¢ changes from 0 to 1, and mjp 4 changes from 1 to 0.
Since we have ensured that no carry is triggered by the differential, §ms and

dmig become dms = 2° and dmig = —23, respectively. Since dms = 2°, dag
becomes dag = 2°, that is, de;g = 23. Therefore, de;g = 23 is canceled by
dmig = —23, and da;; becomes 0. In the case of mse = 1 and mig4 =0, a

similar analysis shows that da;; becomes 0.

From Step 17. Because of input differentials and message expansion, the fol-
lowing message differentials appear from step 19: dmg = 23, dmg = +2°
and dmog = £2'0. dmig = +23 is transferred as shown below, and a21,4 =
a20,4 (OI‘ 21,4 7’5 a2074) is satisfied by 5&21 = :|:23.

(5777,18 = :|:23 — (50,19 = :t23 — (5b20 = :t23 — 5a21 = :|:23 O

Remark. We experimentally confirmed that the probability that this message
modification can satisfy the target condition without affecting other sufficient
conditions is almost 100%. The complexity of this message modification is less
than the operations of 2 steps.

Theorem 2. Suppose we set following conditions as Fxtra Conditions: ai1,21 =
Mmi10,21,M11,26 7 M10,21,010,23 = G923,01219 = 0,a1310 = 1,mi519 #
M10,21, M19,26 7 Mis21. If we modify a message as shown below, the sufficient

condition asz 2 = Moy 2 s satisfied with probability of almost 1.

20 25 18
mig < mio © 27, m1 +— mi1 D27, M5 «— mi5 D 2

Proof. Since the proof of Theorem 2 is almost the same as the proof of Theorem
1 and due to lack of space, we omit the explanation of this proof.

Improved Collision Search for SHA-0 31

Remark. We experimentally confirmed that the probability that this message
modification can satisfy the target condition without affecting the other sufficient
conditions is 97.5%. The complexity of this message modification is less than the
operations of 3 steps.

Theorem 3. Suppose we set the following conditions as Extra Conditions:
ai1,g = 71M10,8,7711,13 75 mio,8,@10,10 = 0a9,10,A12,6 = 0,a13,6 = 17m15,6 7é
M10,8, M19,13 7 Mig,s. If we modify the message as shown below, sufficient con-
dition a4 = ag1,4 (0T a4 7 G21,4) is satisfied with probability of almost 1.

7 12 5
mig < Mo D 2°, M1 + m11 D277, M5 — mis D2

Proof. Since the proof of Theorem 3 is almost same as that of Theorem 1 and
due to lack of space, we omit the explanation of this proof.

Remark. We experimentally confirmed that the probability that this message
modification can satisfy the target condition without affecting the other sufficient
conditions is almost 100%. The complexity of this message modification is less
than the operations of 3 steps.

Theorem 4. Suppose we set following conditions as Fxtra Conditions: ai1,16 =
mio,16, 711,21 75 m10,16, 112,16 7'5 mio,16, 12,14 = 0,a13,14 = 1,m15,14 75 mi0,16,
M19,21 7 Mis,16- If we modify the message as shown below, the sufficient condi-
tion ag3 2 = Mag 2 1s satisfied with probability of almost 1.

15 20 15 13
Mg < Mo @ 277, m11 + Mm11 D 27, m12 < m12 O 27, m15 + Mm15 D2

Proof. Since the proof of Theorem 4 is almost the same as the proof of Theorem
1 and due to lack of space, we omit the explanation of this proof.

Remark. We experimentally confirmed that the probability that this message
modification can satisfy the target condition without affecting the other sufficient
conditions is 97%. The complexity of this message modification is less than the
operations of 4 steps.

4.4 Application to SHA-1

Since a collision attack on SHA-1 [15] is similar to an attack on SHA-0, sub-
marine modification would be applicable to SHA-1. This section considers the
application of submarine modification to SHA-1.

Collision search of SHA-1 is done by using message modification as well as
collision search of SHA-0. In SHA-1, only message modification for sufficient
conditions up to step 22 has been proposed. Therefore, we discuss the possibility
of applying submarine modification to realizing the sufficient conditions after
step 22 of SHA-1. For example, we discuss message modification to satisfy as3 2 =

m22,2.

32 Y. Naito et al.

Example. Suppose we set following conditions as Extra Conditions: ai1,15 =

mio,15, 711,20 7'5 mi0,15,@10,17 7'5 mog,17, 012,13 = 076113,13 = 17m15,13 7'5 mio,15,
M19,21 7 Mis,16 If we modify the message as shown below, the sufficient condition
a23,2 = Mag 2 is satisfied with probability of almost 1.

14 19 12
mig < Mo D277, m11 +— mi1 D277, M5 — mis5 D 2

However, this message modification can impact other sufficient conditions. An
analysis of this is a future work.

If we execute this procedure, the following message differentials appear from
step 19 due to message expansion: dmig = +2'3 4+ 21 dmyg = £220 dmyy =
+215 §mo; = £214 + 216 §myy = +221 Since m19,21 7# Mg, 16 is set as the extra
condition, we can minimize the probability of breaking the other sufficient condi-
tions. We omit this explanation since it basically follows that of Theorem 2.

dmyg = £2'3 is transferred as shown below, and a3 2 = mag o is satisfied by
5&23 = +2.

5m18 =:|:213 —>5a19 = :t213 —>5a20 =:|:218 —>(5a21 =:|:223 —>5a22 = :t228 —>5a23 =12

Remark. Wang et al. announced an improved version of their original attack
on SHA-1 [15] at NIST HASH WORKSHOP 2005 and CT-RSA’06 [12J13].

5 Lack of Sufficient Conditions

When we use the sufficient conditions given by Wang et al. [14], a collision

attack does not necessarily succeed even if all sufficient conditions are satisfied.

This problem occurs because their approach lacks two conditions. Our analysis,

detailed below, showed that the missing conditions are by 9 = 0 and bg 11 = 1.
as is calculated as follows:

a3 = (Clz K 5) + f(bz,cz,dz) + eo + mo + ko.
We transform the above equation for f.
f(b27627d2) = asz — (CZQ < 5) — €2 — M9y — kQ

Since Aaz = 2 —29 — 211 £ 216 Agy = —2% — 26 41 211 Aey = 0 and Amy =

2+ 26 £ 231 Af(by, ca,ds) is calculated as follows:

Af(bg, Ca, dg) = Aasg — (AGQ K 5) — Aey — Amyg
=(2-29—211 4 210) _((—21 204 21!) « 5)—0—(24+2°4+2+31)
=20 4231

Since Aby = —2+4264211, by, is fixed to change from 1 to 0 due to the differential

-2, by7 is fixed to change from 1 to 0, by g is fixed to change from 1 to 0, bz g
is fixed to change from 0 to 1 due to the use of differential 2°. The sign of the

Improved Collision Search for SHA-0 33

change by differential £23! does not have to be considered since it is MSB. Here,
we focus on the 7th and 9th bits.

First, we discuss the 7th bit. Wang et al. takes advantage of the fact that bs 7
changes from 1 to 0 in order to make differential —25 on f(bg, ca,d2). From the
property of f(bs,ca,d2) = (ba A c2) V (mbe Adyg), if we set co7 =1 and dg 7 =0,
that is, ap,9 = 1 and by 9 = 0 as sufficient conditions, we can make differential
—26. However, by = 0 was not one of the sufficient conditions described by
Wang et al.

We turn now to the 9th bit. by g changes from 0 to 1. Wang et al. cancel this
influence in function f. From the property of f(be, ca,ds) = (ba Aca)V (—ba Ads),
if we set ca9 = day9, that is, ap,11 = bo,11, we can cancel the influence of the
change of by 9. Since ag11 = 1 is one of the sufficient conditions given by Wang
et al, we need to set by 11 = 1 as a sufficient condition. This sufficient condition
was not specified by Wang et al.

From the above, we need to use by9 = 0 and bg,11 = 1 as sufficient conditions
in addition to those given by Wang et al.

6 Complexity of Collision Search

Without the additional sufficient conditions the generation of a message that
yields a collision will fail with probability ?1'

Combining the two additional sufficient conditions with those of Wang et al.
and using submarine modification reduces the complexity of collision search to
236 SHA-0 operations. This calculation is given below.

1st block and Step 1-13 of 2nd block. The complexity of generating mes-
sages for these steps is insignificant. Refer to the paper written by Wang et
al. [14].

Step 14-20 of 2nd block. The complexity of generating messages that satisfy
all sufficient conditions in steps 14-20, including message modification, is less
than 8 steps.

Step 21 of 2nd block. The complexity of generating messages that satisfy all
sufficient conditions up to step 21 including submarine modification is less
than,

1
8—|—1—|—2-2:10.

Step 22 of 2nd block. The complexity of generating messages that satisfy all
sufficient conditions up to step 22 including submarine modification is cal-
culated as follows: Let the complexity where conditions up to step 22 are
satisfied and the number of times mq4, m15 is chosen is less than i times
2292,;. In this situation, the following equation below is valid. Here 222 ¢ = 0.

1 ot 1 1
X224 = (20025> . <1O+1+2'3+2'3>+$22,i1

The complexity is about 15 steps since lim x99 ; ~ 15.
1— 00

34 Y. Naito et al.

Table 2. An example of generated collision pair

Mipiock |f459644¢ b87cdael ed98d4a6 7f5¢304b a8606648 073ddal’8d 9f044c3a 2386¢95f

8b611aad d66ed3b9 c4854f6e d57662b3 d687ebel f61cefe5 6d0252¢2 01f298bce

Rhibiock |41£3e784 96831ef3 563e0aa9 d7def7ba 232e8581

Moapiock | 76¢21fb3 8a725cha 13a6039¢ a23c¢1950 53e65762 b70bbb88 705ec5b6 079e5dd5
5879316 d67d305e 352ee1b8 87¢36500 fd012chb5 ab51c4269 6a72aabd 7a2449cc

Mp0ek |f6c211F1 8a725c5a 93a603de a23c¢1910 53e65722 b70bbbca f05ec5b4 879e5dd7

f58793b6 567d305e b52eelf8 07¢36502 fd012cb7 251c¢4229 ea72aabd fa24498c

hopiock |[cad68lal 354105dc ac31607b 6cecabadd c76d1948

Step 23 of 2nd block. The complexity of generating messages that satisfy all
sufficient conditions up to step 23 including submarine modification is cal-
culated as follows: Let the complexity where conditions up to step 23 are
satisfied and the number of times mq4, m15 is chosen is less than i times
x23,. In this situation, the following equation below is valid. Here 2239 = 0.

1—1
1 1
To3,; = (2 003) . (15 +1+ 9 4) + T23,i—1

The complexity is about 18 steps since lim x23; ~ 18.

11— 00

Step i(i = 24 — 80) of 2nd block. Let the complexity of generating messages
that satisfy all sufficient conditions up to the ¢ — 1 step be y;_1. If there are
n; sufficient conditions in the i-th step, the probability that all of them are
satisfied is 27 ™. Therefore, y;, the complexity of generating messages that
satisfy all sufficient conditions up to the i-th step, is y; = (yi—1 + 1) - 2™.
From this equation, ygp = 6180766429108. This is equivalent to 236 SHA-0
operations. From the above consideration, the total complexity of collision
search is 236 SHA-0 operations.

Remark. There is a possibility the collision attack could be further improved
by using another differential path. We discuss this topic in Appendix A.

7 Conclusion

In this paper, we proposed submarine modification, message modification that can
satisfy the sufficient conditions in steps 21-24. Moreover, we showed that subma-
rine modification is applicable to SHA-1. We also showed that the sufficient con-
ditions given by Wang et al. are incomplete since they are missing by9 = 0 and
bo,11 = 1. Therefore, even if a message that satisfies all sufficient conditions given
by Wang et al. is discovered, a collision generation may fail with probability i. By
utilizing the two additional sufficient conditions and submarine modification, the
complexity of collision search is reduced to 23¢ SHA-0 operations.

Table 2 shows a collision found by using the technique proposed herein.
Mipioer, is a message of the 1st block, hipcr is the output of the compres-
sion function of the 1st block. Mapjock is a message for the 2nd block, M, . is

Improved Collision Search for SHA-0 35

a message of 2nd block after the differential is input, hopiock is the output of the
compression function of 2nd block.

Acknowledgement. We would like to thank The Telecommunications Advance-
ment Foundation for supporting our research.

References

10.

11.

12.

13.

14.

15.

. Eli Biham and Rafi Chen. Near Collisions of SHA-0. CRYPTO’04, LNCS 3152,

pp290-305, Springer-Verlag, 2004.

. Eli Biham, Rafi Chen, A. Joux, P. Carribault, W. Jalby and C. Lemuet. Collisions

in SHA-0 and Reduced SHA-1. EUROCRYPT’05, LNCS 3494, pp36-57, Springer-
Verlag, 2005.

. Florent Chabaud and Antoine Joux. Differential Collisions in SHA-O.

CRYPTO’98, LNCS 1462, pp56—71, Springer-Verlag, 1998.

. Antoine Joux. Collision for SHA-0. Runm session of CRYPT02004, August 2004.
. NIST. Secure hash standard. Federal Information Processing Stacdard, FIPS-180,

May 1993.

. NIST. Secure hash standard. Federal Information Processing Stacdard, FIPS-180-1,

April 1995.

. Xiaoyun Wang, Dengguo Feng, Hui Chen, Xuejia Lai and Xiuyuan Yu. Collision

for Hash Functions MD/, MD5, HAVAL-128 and RIPEMD. In Rump Session of
CRYPTO’04 and Cryptology ePrint Archive, Report 2004/199.

. Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen and Xiuyuan Yu. Cryptanal-

ysis of the Hash Functions MD4 and RIPEMD. EUROCRYPT’05, LNCS 3494,
pp1-18, Springer-Verlag, 2005.

. Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions.

EUROCRYPT’05, LNCS 3494, pp19-35, Springer-Verlag, 2005.

Xiaoyun Wang. The Collision Attack on SHA-0. In Chinese, to appear on
www.infosec.edu.cn, 1997.

Xiaoyun Wang. The Improved Collision Attack on SHA-0. In Chinese, to appear
on www.infosec.edu.cn, 1998.

Xiaoyun Wang, Andrew C Yao, and Frances Yao. Cryptanalysis on SHA-1 Hash
Function . Keynote Speech at CRYPTOGRAPHIC HASH WORKSHOP.
Xiaoyun Wang. Cryptanalysis of Hash functions and Potential Dangers. Invited
Talk at CT-RSA 2006.

Xiaoyun Wang, Hongbo Yu and Yiqun Lisa Yin. Efficient Collision Search Attack
on SHA-0. CRYPTO’05, LNCS 3621, ppl-16, Springer-Verlag, 2005.

Xiaoyun Wang, Yiqun Lisa Yin and Hongbo Yu. Finding Collisions in the Full
SHA-1. CRYPTO’05, LNCS 3621, ppl7-36, Springer-Verlag, 2005.

A A Study of Other Disturbance Vectors

Wang et al. chose a disturbance vector under the condition that the sufficient
conditions up to step 20 can be satisfied by message modification. Therefore,
they chose a disturbance vector to minimize the number of sufficient conditions
after step 20. However, submarine modification can satisfy sufficient conditions

36 Y. Naito et al.

up to step 24 can be satisfied by message modification. Therefore, we expect
that if we choose a disturbance vector to minimize the number of sufficient
conditions after step 24, we can generate a collision with complexity under 236
SHA-0 operations. If we use the disturbance vector chosen by Wang et al, the
number of conditions after step 24 is 38. However, by using the disturbance
vector shown in Table 3, the number of conditions after step 24 is 37. Therefore,
we expect that the disturbance vector shown in Table 3 enables us to generate
a collision with complexity under 236 SHA-0 operations. Additional analysis on
this matter is a future task.

Table 3. A Disturbance Vector for Reduced Complexity

) value
—5,.,-101110
0,..,19 00000111001101111101
20,..,39 01101110001000101010
40,...,59 00000000100100001000
60,...,79 00100001001011000000

B Complement of Collision Search by Wang et al.

B.1 2nd Bit and 7th Bit of Messages

The complexity claims of Wang et al. claim address only the sufficient conditions
of chaining variables. They don’t consider the complexity of satisfying the suf-
ficient conditions of messages. However, when a random message is generated,
it must satisfy the sufficient conditions of messages, and this takes a few steps.
This raises the complexity of collision search. This increase can be suppressed
by fixing the 2nd bit and 7th bit of the messages in advance in order to ensure
satisfaction of the sufficient conditions.

B.2 Sufficient Conditions Given by Wang et al.

The sufficient conditions of Wang et al. include those for ai3.4, @144, @15 4, @16 4,
a17,2. These values depend on the method used to fix the 2nd and 7th bits of the
messages (Discussed in Appendix B.1). That is, if a fixing method different from
that of Wang et al. is chosen, the sufficient conditions for @13 4, @14,4, @15,4, @16,4,
a17,2 are also changed.

	Introduction
	Structure of SHA-0SHA-0
	Collision Attack by Wang et al.WangMD4,WangMD5,WangSHA-0,WangSHA-1
	Message Modification for SHA-0 and MD-Family
	Collision Search for SHA-0

	New Message Modification Techniques
	Main Idea of Submarine Modification
	How to Construct Submarine Modification
	Proposal of Submarine Modification
	Application to SHA-1

	Lack of Sufficient Conditions
	Complexity of Collision Search
	Conclusion
	A Study of Other Disturbance Vectors
	Complement of Collision Search by Wang et al.
	2nd Bit and 7th Bit of Messages
	Sufficient Conditions Given by Wang et al.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

