Skip to main content

On Approximating the Maximum Simple Sharing Problem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4288))

Abstract

In the maximum simple sharing problem (MSS), we want to compute a set of node-disjoint simple paths in an undirected bipartite graph covering as many nodes as possible of one layer of the graph, with the constraint that all paths have both endpoints in the other layer. This is a variation of the maximum sharing problem (MS) that finds important applications in the design of molecular quantum-dot cellular automata (QCA) circuits and physical synthesis in VLSI. It also generalizes the maximum weight node-disjoint path cover problem. We show that MSS is NP-complete, present a polynomial-time \(5\over 3\)-approximation algorithm, and show that it cannot be approximated with a factor better than \(740\over 739\) unless P = NP.

This work was supported in part by a grant from the Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai, China. The order of authors follows the international standard of alphabetic order of the last name. In China, where first-authorship is a particularly important aspect of a publication, the order of authors should be Zhiyi Xie, Jian Li, Hong Zhu, Danny Z. Chen, and Rudolf Fleischer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonelli, D.A., Chen, D.Z., Dysart, T.J., Hu, X.S., Khang, A.B., Kogge, P.M., Murphy, R.C., Niemier, M.T.: Quantum-dot cellular automata (QCA) circuit partitioning: problem modeling and solutions. In: Proc. 41st ACM/IEEE Design Automation Conference (DAC), pp. 363–368 (2004)

    Google Scholar 

  2. Berman, P., Karpinski, M.: 8/7-approximation algorithm for (1,2)-TSP. In: Proc. 17th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA 2006), pp. 641–648 (2006)

    Google Scholar 

  3. Cao, A., Koh, C.-K.: Non-crossing OBDDs for mapping to regular circuit structures. In: Proc. IEEE International Conference on Computer Design, pp. 338–343 (2003)

    Google Scholar 

  4. Chaudhary, A., Chen, D.Z., Hu, X.S., Niemier, M.T., Ravinchandran, R., Whitton, K.M.: Eliminating wire crossings for molecular quantum-dot cellular automata implementation. In: Proc. IEEE/ACM International Conference on Computer-Aided Design, pp. 565–571 (2005)

    Google Scholar 

  5. Cook, W., Rohe, A.: Computing minimum-weight perfect matchings. INFORMS J. on Computing 11(2), 138–148 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Edmonds, J.: Maximum matching and a polyhedron with 0,1-nodes. J. Res. Nat. Bur. Stand. B 69, 125–130 (1965)

    MATH  MathSciNet  Google Scholar 

  7. Engebretsen, L., Karpinski, M.: TSP with bounded metrics. Journal of Computer and System Sciences 72(4), 509–546 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kosaraju, S.R., Park, J.K., Stein, C.: Long tours and short superstrings. In: Proc. 35th Annual Symp. on Foundations of Computer Science (FOCS 1994), pp. 166–177 (1994)

    Google Scholar 

  9. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New York (1990)

    MATH  Google Scholar 

  10. Li, J., Chaudhary, A., Chen, D.Z., Fleischer, R., Hu, X.S., Niemier, M.T., Xie, Z., Zhu, H.: Approximating the Maximum Sharing Problem (2006) (submitted for publication)

    Google Scholar 

  11. Marek-Sadowska, M., Sarrafzadeh, M.: The crossing distribution problem. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 14(4), 423–433 (1995)

    Article  Google Scholar 

  12. Niemier, M.T., Kogge, P.M.: Exploring and exploiting wire-level pipelining in emerging technologies. In: Proc. 28th Annual International Symp. on Computer Architecture, pp. 166–177 (2001)

    Google Scholar 

  13. Papadimitriou, C.H., Yannakakis, M.: The Traveling Salesman Problem with distances one and two. Mathematics of Operations Research 18(1), 1–11 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Thompson, C.D.: Area-time complexity for VLSI. In: Proc. 11th Annual ACM Symp. on Theory of Computing (STOC 1979), pp. 81–88 (1979)

    Google Scholar 

  15. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. of App. Phys. 75, 1818 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, D.Z., Fleischer, R., Li, J., Xie, Z., Zhu, H. (2006). On Approximating the Maximum Simple Sharing Problem. In: Asano, T. (eds) Algorithms and Computation. ISAAC 2006. Lecture Notes in Computer Science, vol 4288. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11940128_55

Download citation

  • DOI: https://doi.org/10.1007/11940128_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49694-6

  • Online ISBN: 978-3-540-49696-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics