Skip to main content

Real Time Dynamics and Control of a Digital Human Arm for Reaching Motion Simulation

  • Conference paper
Advances in Artificial Reality and Tele-Existence (ICAT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4282))

Included in the following conference series:

  • 2204 Accesses

Abstract

High-fidelity simulations for dynamics and movement control of the human arm is a complex and challenging problem. To realize such high-quality response in real time using today’s computing power is simply not possible. In this paper we have presented a simplified, neural network-based dynamics model of a digital human arm for simulating its reaching movements. The arm is modeled as an assemblage of 2 rigid bodies connected by joints and muscles. A Hill-type model is used to capture the muscle forces. Activation dynamics via a low-pass filtering operation is applied to trigger musculotendon contractions. Since we are interested in real-time macro response, we have replaced the forward dynamics module with a recurrent neural network approach. The results of our simulation show that the model produces fairly realistic reaching motion of the arm and it is able to do so in real-time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dornay, M., Uno, Y., Kawato, M., Suzuki, R.: Simulation of optimal movements using the minimum-muscle-tension-change model. Adv. Neural Info. Processing Syst. 4, 627–634 (1991)

    Google Scholar 

  2. Jordan, M.I., Rumelhart, D.E.: Forward models: supervised learning with distal teacher. Cognitive Sci. 16, 307–354 (1992)

    Article  Google Scholar 

  3. Massone, L.L.E., Myers, J.D.: The role of plant properties in arm trajectory formation: a neural network study. IEEE Trans. Syst. Man Cybern. B 26, 719–732 (1996)

    Article  Google Scholar 

  4. Karniel, A., Inbar, G.F.: A model for learning human reaching movements. Biol. Cybern. 77, 173–183 (1997)

    Article  MATH  Google Scholar 

  5. Fagg, A.H., Sitkoff, N., Barto, A.G., Houk, J.C.: A model of cerebellar learning for control of arm movements using muscle synergies. In: 1997 IEEE Int. Symp. Computational Intelligence in Robotics and Automation (CIRA 1997), pp. 6–12 (1997)

    Google Scholar 

  6. Ogihara, N., Yamazaki, N.: Generation of human reaching movement using a recurrent neural network model. In: IEEE SMC 1999 Conf. Proc. of Syst. Man Cybern., vol. 2, pp. 692–697 (1999)

    Google Scholar 

  7. Kashima, T., Isurugi, Y., Shima, M.: Analysis of a muscular control system in human movements. Biol. Cybern. 82, 123–131 (2000)

    Article  MATH  Google Scholar 

  8. Lan, N.: Stability analysis for postural control in a two-joint limb system. IEEE Trans. On Neural Syst. Rehab. Eng. 10, 249–259 (2001)

    Google Scholar 

  9. Thelen, D.G., Anderson, F.C., Delp, S.L.: Generating dynamic simulations of movement using computed muscle control. Jour. Biomech. 36, 321–328 (2003)

    Article  Google Scholar 

  10. De Sapio, V., Warren, J., Khatib, O., Delp, S.L.: Simulating the task-level control of human motion: a methodology and framework for implementation. Visual Comp. 21, 289–302 (2005)

    Article  Google Scholar 

  11. Atkeson, C.G.: Learning arm kinematics and dynamics. Ann. Revw. Neurosci. 12, 157–183 (1989)

    Article  Google Scholar 

  12. Winters, J.M., Stark, L.: Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans. Biomed. Eng. 32, 826–839 (1985)

    Article  Google Scholar 

  13. Zangemeister, W.H., Lehman, S., Stark, L.: Simulation of head movement trajectories: model and fit to main sequence. Biol. Cybern. 41, 19–32 (1981)

    Article  Google Scholar 

  14. Schutte, L.M.: Using musculoskeletal models to explore strategies for improving performance in electrical stimulation-induced leg cycle ergometry. PhD. thesis, Stanford University (1992)

    Google Scholar 

  15. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Critical Reviews Biomed. Eng. 17, 359–411 (1989)

    Google Scholar 

  16. Zhang, A.: Motion simulation of the human upper limb based on MATLAB. Master thesis, Tianjin University, Tianjin, China, in Chinese (2003)

    Google Scholar 

  17. Pineda, F.J.: Dynamics and architecture for neural computation. Jour. Complexity 4, 216–245 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Katayama, M., Kawato, M.: Virtual trajectory and stiffness ellipse during multijoint arm movement predicted by neural inverse. Biol. Cybern. 69, 353–362 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, H., Han, R.P.S. (2006). Real Time Dynamics and Control of a Digital Human Arm for Reaching Motion Simulation. In: Pan, Z., Cheok, A., Haller, M., Lau, R.W.H., Saito, H., Liang, R. (eds) Advances in Artificial Reality and Tele-Existence. ICAT 2006. Lecture Notes in Computer Science, vol 4282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941354_43

Download citation

  • DOI: https://doi.org/10.1007/11941354_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49776-9

  • Online ISBN: 978-3-540-49779-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics