Abstract
We show in this paper how to apply well known methods from sparse linear algebra to the problem of computing the immunity of a Boolean function against algebraic or fast algebraic attacks. For an n-variable Boolean function, this approach gives an algorithm that works for both attacks in O(n2n D) complexity and O(n2n) memory. Here \(D = \binom{n}{d}\) and d corresponds to the degree of the algebraic system to be solved in the last step of the attacks. For algebraic attacks, our algorithm needs significantly less memory than the algorithm in [ACG + 06] with roughly the same time complexity (and it is precisely the memory usage which is the real bottleneck of the last algorithm). For fast algebraic attacks, it does not only improve the memory complexity, it is also the algorithm with the best time complexity known so far for most values of the degree constraints.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Armknetcht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient computation of algebraic immunity for algebraic and fast algebraic attacks. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 147–164. Springer, Heidelberg (2006)
Armknetch, F.: Improving fast algebraic attacks. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 65–82. Springer, Heidelberg (2004), http://eprint.iacr.org/2004/185/
Braeken, A., Lano, J., Preneel, B.: Evaluating the resistance of stream ciphers with linear feedback against fast algebraic attacks. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 40–51. Springer, Heidelberg (2006)
Braeken, A., Preneel, B.: On the algebraic immunity of symmetric Boolean functions (2005), http://eprint.iacr.org/2005/245/
Carlet, C.: Improving the algebraic immunity of resilient and nonlinear functions and constructing bent functions (2004), http://eprint.iacr.org/2004/276/
Courtois, N., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 346–359. Springer, Heidelberg (2003)
Coppersmith, D.: Solving linear equations over GF(2) via block Wiedemann algorithm. Math. Comp. 62(205), 333–350 (1994)
Coppersmith, D., Odlyzko, A., Schroeppel, R.: Discrete logarithms in GF(p). Algorithmitica 1, 1–15 (1986)
Courtois, N.: Fast algebraic attacks on stream ciphers with linear feedback. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidelberg (2003)
Dalai, D.K., Gupta, K.C., Maitra, S.: Results on algebraic immunity for cryptographically significant Boolean functions. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 92–106. Springer, Heidelberg (2004)
Dalai, D.K., Maitra, S.: Reducing the number of homogeneous linear equations in finding annihilators. In: Gong, G., Helleseth, T., Song, H.-Y., Yang, K. (eds.) SETA 2006. LNCS, vol. 4086, pp. 376–390. Springer, Heidelberg (2006)
Dalai, D.K., Maitra, S., Sarkar, S.: Basic theory in construction of Boolean functions with maximum possible annihilator immunity (2005), http://eprint.iacr.org/2005/229/
Didier, F., Tillich, J.-P.: Computing the algebraic immunity efficiently. In: Robshaw, M.J.B. (ed.) FSE 2006. LNCS, vol. 4047, pp. 359–374. Springer, Heidelberg (2006)
Faugère, J.-C., Ars, G.: An algebraic cryptanalysis of nonlinear filter generator using Gröbner bases. Rapport de Recherche INRIA, 4739 (2003)
Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE) cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)
Hawkes, P., Rose, G.C.: Rewriting variables: The complexity of fast algebraic attacks on stream ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 390–406. Springer, Heidelberg (2004)
Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory IT-15, 122–127 (1969)
Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)
Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic significance. In: Theory and Application of Cryptographic Techniques, pp. 224–314 (1984)
Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory IT-32, 54–62 (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Didier, F. (2006). Using Wiedemann’s Algorithm to Compute the Immunity Against Algebraic and Fast Algebraic Attacks. In: Barua, R., Lange, T. (eds) Progress in Cryptology - INDOCRYPT 2006. INDOCRYPT 2006. Lecture Notes in Computer Science, vol 4329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941378_17
Download citation
DOI: https://doi.org/10.1007/11941378_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49767-7
Online ISBN: 978-3-540-49769-1
eBook Packages: Computer ScienceComputer Science (R0)