Abstract
One of the most widely used shared-key authentication schemes today is a challenge-response scheme. In this scheme, a function such as a message authentication code or a symmetric encryption scheme plays an important role. To ensure the security, we need to assume that these functions are included in a certain kind of functions family, e.g., a pseudorandom functions family. For example, functions such as SHA1-HMAC, DES and AES often assumed as the pseudorandom functions. But unfortunately, nobody knows that these functions are really pseudorandom functions and if not, then the security of the challenge-response scheme is not ensured any more. The common way to reduce this kind of fear is to construct the shared-key authentication scheme which can be proven secure with a weaker assumption on these functions. In this paper, we show that a blind-challenge-response shared-key authentication scheme which is a simple modified version of the original challenge-response authentication scheme can be constructed from a weaker cryptographic assumption known as weak pseudorandom functions.
The essential part of this paper was done when the authors were in the university of Tokyo.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aiello, W., Rajagopalan, S., Venkatesan, R.: High-Speed Pseudorandom Number Generation with Small Memory. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 290–304. Springer, Heidelberg (1999)
Bellare, M.: New Proofs for NMAC and HMAC: Security without Collision-Resistance (2006), Available from: http://www-cse.ucsd.edu/~mihir/papers/hmac-new.html
Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer, Heidelberg (1996)
Bellare, M., Palacio, A.: GQ and Schnorr Identification Schemes: Proofs of Security against Impersonation under Active and Concurrent Attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)
Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic Primitives Based on Hard Learning Problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994)
Damg\(\dot {a}\)rd, I., Nielsen, J.B.: Expanding Pseudorandom Functions; or: From Known-Plaintext Security to Chosen-Plaintext Security. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 449–464. Springer, Heidelberg (2002)
Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg (2005)
Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)
Katz, J., Shin, J.S.: Parallel and Concurrent Security of the HB and HB+ Protocols. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer, Heidelberg (2006)
Maurer, U.M., Oswald, Y.A., Pietrzak, K., Sjödin, J.: Luby-Rackoff Ciphers from Weak Round Functions? In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 391–408. Springer, Heidelberg (2006)
Maurer, U., Sjödin, J.: From Known-Plaintext to Chosen-Ciphertext Security, Cryptology ePrint Archive, Report 2006/071 (2006)
Naor, M., Reingold, O.: Synthesizers and Their Application to the Parallel Construction of Pseudo-Random Functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)
Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random functions. J. ACM 51(2), 231–262 (2004)
Naor, M., Reingold, O.: From Unpredictability to Indistinguishability: A Simple Construction of Pseudo-Random Functions from MACs. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 267–282. Springer, Heidelberg (1998), Available from: http://www.wisdom.weizmann.ac.il/~naor/PAPERS/mac_abs.html
Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nojima, R., Kobara, K., Imai, H. (2006). Efficient Shared-Key Authentication Scheme from Any Weak Pseudorandom Function. In: Barua, R., Lange, T. (eds) Progress in Cryptology - INDOCRYPT 2006. INDOCRYPT 2006. Lecture Notes in Computer Science, vol 4329. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941378_22
Download citation
DOI: https://doi.org/10.1007/11941378_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49767-7
Online ISBN: 978-3-540-49769-1
eBook Packages: Computer ScienceComputer Science (R0)