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Abstract. Setting weights for Open Shortest Path First (OSPF) rout-
ing protocol is an NP-hard problem. Optimizing these weights leads to
less congestion in the network while utilizing link capacities efficiently.
In this paper, Simulated Evolution (SimE), a non-deterministic iterative
heuristic, is engineered to solve this problem. A cost function that de-
pends on the utilization and the extra load caused by congested links
in the network is used. A goodness measure which is a prerequisite of
SimE is designed to solve this problem. The proposed SimE algorithm is
compared with Simulated Annealing. Results show that SimE explores
search space intelligently due to its goodness function feature and reaches
near optimal solutions very quickly.

1 Introduction

Non-deterministic iterative heuristics such as Simulated Annealing, Simulated
Evolution, Genetic Algorithms etc., are stochastic algorithms that have found
applications in myriad complex problems in science and engineering. They are
extensively used for solving combinatorial optimization problems involving large,
multi-modal search spaces, where regular constructive algorithms often fall short.
One such domain that involves such non-convex problems is Routing - a fun-
damental engineering mechanism in computer communication networks. The
optimization objective here is to determine the least expensive or best possi-
ble path between a source and destination. Routing can become increasingly
complex in large networks because of the many potential intermediate nodes a
packet traverses before reaching its destination [1]. To address this, the Internet
is divided into smaller domains i.e., Autonomous Systems (AS). Each AS is a
group of networks and routers under the authority of a single administration. An
Interior Gateway Protocol (IGP) is used within an AS, while Exterior Gateway
Protocols (EGP) are used to route traffic between them [2].
The TCP/IP suite has many routing protocols, one of them is the Open

Shortest Path First (OSPF) Routing Protocol, used in today’s Internet [1, 3].
A computationally complex component related to the OSPF routing protocol is
addressed - the OSPF Weight Setting (OSPFWS) problem. Proven to be NP-
hard [4], it involves setting the OSPF weights on the network links such that the
network is utilized efficiently.



2 Related Work

The use of non-deterministic iterative algorithms for solving the OSPFWS prob-
lem has been previously reported. In [4], a cost function based on the utilization
ranges was formulated and Tabu search [5] was used. Dynamic shortest path al-
gorithm was applied to find multiple equidistance shortest paths between source
and destination nodes [6]. Ericsson et al applied genetic algorithm to the same
problem [7]. Other papers on optimizing OSPF weights [8] have either chosen
weights so as to avoid multiple shortest paths from source to destination, or
applied a protocol for breaking ties, thus selecting a unique shortest path for
each source-destination pair. Rodrigues and Ramakrishnan [8] presented a lo-
cal search procedure similar to that of Fortz and Thorup [4]. The input to the
algorithm for this problem is a network topology, capacity of links and a de-
mand matrix. The demand matrix represents the traffic between each pair of
nodes present in the topology. The methodology for deriving traffic demands
from operational networks is described in [9]. For other related work the reader
is referred to the contributions in [10, 11].
In this paper SimE algorithm is engineered to solve the OSPFWS. An en-

hanced cost function proposed in our previous work is used for this problem [12].

3 Problem Statement

The OSPF Weight Setting (OSPFWS) problem can be stated as follows: Given
a network topology and predicted traffic demands, find a set of OSPF weights
that optimize network performance. More precisely, given a directed network
G = (N,A), a demand matrix D, and capacity Ca for each arc a ∈ A, it is
required to find a positive integer wa ∈ [1, wmax] such that the cost function
Φ is minimized; wmax is a user-defined upper limit. The chosen arc weights
determine the shortest paths, which in turn completely determine the routing
of traffic flow, the loads on the arcs, and the value of the cost function Φ. The
quality of OSPF routing depends highly on the choice of weights [12]. Figure 1
depicts a topology with assigned weights in the range [1, 20]. A solution for this
topology can be represented as (18, 1, 7, 15, 3, 17, 5, 14, 19, 13, 18, 4, 16, 16). These
elements (i.e., weights) are arranged in a specific order for simplicity. They are
ordered in the following manner: the outgoing links from node A listed first (i.e.,
AB, AF), followed by the outgoing links from node B (i.e., BC, BD), and so on.
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Fig. 1: Representation of a topology with assigned weights.



Mathematical Model and Cost Function

Fortz and Thorup discussed a cost function based on the utilization ranges in
their paper [4], which here is denoted as FortzCF. Through experimentation
it was found that this cost function does not address the optimization of the
number of congested links. In our previous work, the following new cost function
was proposed [12].

Φ =MU +

∑

a∈SetCA (la − ca)

E
(1)

This new function,denoted as NewCF, contains two terms. The first is the
maximum utilization (MU) in the network. The second term represents the ex-
tra load on the network divided by the number of edges present in the network
to normalize the entire cost function. The motivation behind using such a cost
function is to reduce the number of congested links, if any. Consequently, the
network designer will need to upgrade fewer links in the network to avoid con-
gestion, which in turn means a less expensive upgrade.
The steps to compute the cost function Φ for a given weight setting {wa}a∈A

and a given graph G = (N,A) with capacities {ca}a∈A and demands dst ∈ D
are enumerated in [12]. This procedure is also described in [13].

4 Engineering SimE for OSPFWS

SimE is a general iterative heuristic proposed by Ralph Kling [14]. It falls in
the category of algorithms which emphasize the behavioral link between parents
and offspring, or between reproductive populations, rather than the genetic link.
This scheme combines iterative improvement and constructive perturbation and
saves itself from getting trapped in local minima by following a stochastic per-
turbation approach. It iteratively operates a sequence of evaluation, selection,
and allocation steps on one solution.
The selection and allocation steps constitute a compound move from the cur-

rent solution to another solution of the state space. SimE proceeds as follows
- It starts with a randomly or constructively generated valid initial solution. A
solution is seen as a set of movable elements. Each element ei has an associated
goodness measure gi in the interval [0, 1]. In the evaluation step, the goodness of
each element is estimated. In the consequent selection step, a subset of elements
are selected and removed from the current solution. The lower the goodness of
a particular element, the higher is its selection probability. A bias parameter
B is used to compensate for inaccuracies of the goodness measure. Finally, the
allocation step tries to assign the selected elements to better locations. Other
than these three steps, some input parameters for the algorithm are set in an
earlier step known as initialization.

Evaluation: SimE operates on a single solution termed as the population, which
consists of elements. For the OSPFWS problem, each individual or element is a
weight on a link. The Evaluation step consists of evaluating the goodness of each



individual of the current solution. The goodness measure must be a number in
the range [0, 1]. The goodness function is a key factor of Simulated Evolution
and should be carefully formulated to handle the target objective of the given
problem. As two cost functions are present two corresponding goodness functions
are defined as follows. For FortzCF, the goodness function is taken as:

gij = 1− Φi,j/MC (2)

For NewCF, the goodness function proposed is:

gij =

{

1− uij for MU ≤ 1
1− uij/MU + uij/MU2 for MU > 1

(3)

Selection: In this stage of the algorithm, for each link i of the network, a random
number RANDOM ∈ [0, 1] is generated and compared with gi + B, where B
is the selection bias. If RANDOM > gi + B, then weight wi is selected for
allocation. Bias B is used to control the size of the set of weights selected. For
FortzCF, a bias value of -0.03 is found to be suitable through experimentation.
For NewCF, when maximum utilization is less than 1, a variable bias method-

ology [15] is used. The variable bias is a function of the quality of the current
solution. When the overall solution quality is poor, a high value of bias is used,
otherwise a low value is employed. The average weight goodness is a measure of
how many “good” weights are present in a solution.

Allocation: During this stage of the algorithm, the selected weights are removed
from the solution one at a time. For each removed weight, new weights are tried
to obtain an overall better solution. For OSPFWS problem, the weight on a link
lies in the range [1,20]. Different allocation schemes were tried for this problem,
but we use the following scheme which provided good results both in quality and
time. For all iterations, a weight window of value 4 is maintained. For example,
if weight 6 is selected to change, then the values {4, 5, 7, 8} are tried. This is
done to moderate the perturbation of the solution state per iteration.

5 Results and Discussion

All the test cases used here are taken from the work by Fortz and Thorup [4].
Details regarding these test cases and their characteristics can be found in [13].
Figures 2 and 3 illustrate the behavior of the proposed SimE algorithm using

NewCF. These figures respectively plot the average goodness and cardinality of
the selection set for test case h50N148a, i.e., 50 nodes and 148 arcs. It is observed
in Figure 2 that the average goodness increases with time. In the initial stages
of the search, this rate of increase is significant and tends to slow down in
later iterations. This slow stage suggests that on average, the weights have been
assigned their values and the point of convergence has been reached. In Figure 3,
the cardinality of the selection set is shown. Here it is observed that the number of
selected elements (i.e., weights) decreases as the iterations increase. This suggests
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Fig. 2: Average goodness of weights for
test case h50N148a NewCF.
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Fig. 3: Selection set size for test case
h50N148a NewCF.

that the algorithm is reaching a level of convergence and therefore fewer number
of weights are selected for perturbation. If the trends in Figures 2 and 3 are
compared, the observation is that the convergence of the SimE algorithm towards
a better solution is correlated with the average goodness of links.
Table 1 show the maximum utilization (MU) and number of congested link

(NOC) values for all test cases with the highest demand values using Simulated
Annealing (SA) [12] and SimE.

Table 1: MU and NOC corresponding to highest demand for all test cases (SA & SimE)

SA SimE

Test case Demand FortzCF NewCF FortzCF NewCF
value MU NOC MU NOC MU NOC MU NOC

h100N280a 4605 1.341 8 1.341 7 1.341 23 1.341 5

h100N360a 12407 1.383 16 1.740 11 1.409 17 1.424 14

h50N148a 4928 1.271 9 1.411 9 1.532 10 1.386 9

h50N212a 3363 1.151 10 1.209 6 1.365 8 1.349 6

r100N403a 70000 1.441 95 1.826 58 1.407 81 1.402 45

r100N503a 100594 1.445 106 1.983 86 1.272 66 1.384 38

r50N228a 42281 1.218 38 1.394 22 1.316 33 1.339 20

r50N245a 53562 1.856 54 2.617 40 2.553 45 2.339 36

w100N391a 48474 1.401 1 1.424 1 1.495 1 1.284 1

w100N476a 63493 1.314 16 1.374 11 1.315 7 1.314 6

w50N169a 25411 1.252 5 1.249 3 1.252 11 1.260 5

w100N230a 39447 1.222 3 1.222 3 1.230 3 1.224 3

Average 1.358 30.083 1.566 21.417 1.457 25.417 1.421 15.667

6 Conclusion

In this paper, Simulated Evolution (SimE) is engineered to solve the the OSPFWS
problem. A new proposed cost function [12] is employed which addresses the op-
timization of the number of congested links, and the required goodness functions



are designed. The results obtained show that the engineered SimE heuristic is
always able to find near-optimal solutions. Comparison with Simulated Anneal-
ing (SA) showed that the search performed by SimE is more intelligent, i.e., the
solutions generated by SimE are of superior quality than that of SA and are
obtained in better time.
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