Skip to main content

Locality Preserving Projection on Source Code Metrics for Improved Software Maintainability

  • Conference paper
AI 2006: Advances in Artificial Intelligence (AI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4304))

Included in the following conference series:

  • 3108 Accesses

Abstract

Software project managers commonly use various metrics to assist in the design, maintaining and implementation of large software systems. The ability to predict the quality of a software object can be viewed as a classification problem, where software metrics are the features and expert quality rankings the class labels. In this paper we propose a Gaussian Mixture Model (GMM) based method for software quality classification and use Locality Preserving Projection (LPP) to improve the classification performance. GMM is a generative model which defines the overall data set as a combination of several different Gaussian distributions. LPP is a dimensionality deduction algorithm which can preserve the distance between samples while projecting data to lower dimension. Empirical results on benchmark dataset show that the two methods are effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Xing, F., Guo, P., Lyu, M.R.: A novel method for early software quality prediction based on support vector machine. In: Proceedings 16th International Symposium on Software Reliability Engineering, ISSRE 2005, Chicago, Illinois, November 8-11 (2005)

    Google Scholar 

  2. He, X., Cai, D., Min, W.: Statistical and computational analysis of locality preserving projection. In: International Conference on Machine Learning (ICML), Bonn, Germany (2005)

    Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14, MIT Press, Cambridge (2002)

    Google Scholar 

  4. Janet, M., Moreno Pedro, J.: A Study of Musical Instrument Classification using Gaussian Mixture Models and Support Vector Machines. Compaq & DEC Technical Reports, CRL-99-4 (1999)

    Google Scholar 

  5. He, X., Niyogi, P.: Locality preserving projection. In: Advances in Neural Information Processing Systems (NIPS 2003), vol. 16, MIT Press, Vancouver (2003)

    Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector Networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  7. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  8. Garmus, D., Herron, D.: Measuring the Software Process. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  9. MIS: (access 2006), http://www.win.tue.nl/~jromijn/2IW30/2IW30_statistics/LYU/DATA/CH12

  10. Jin, X., Bie, R., Gao, X.: An Artificial Immune Recognition System-based Approach to Software Engineering Management with Software Metrics Selection. In: Sixth International Conference on Intelligent System Design and Application (ISDA 2006) (2006)

    Google Scholar 

  11. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons, New York (1973)

    MATH  Google Scholar 

  12. Pedrycz, W., Succi, G.: Genetic Granular Classifiers in Modeling Software Quality. Journal of Systems and Software 76(3), 277–285 (2005)

    Article  Google Scholar 

  13. Pedrycz, W., Succi, G., Chun, M.G.: Association Analysis of Software Measures. Int. J. of Software Engineering and Knowledge Engineering 12(3), 291–316 (2002)

    Article  Google Scholar 

  14. Muller, K.H., Paulish, D.J.: Software Metrics. IEEE Press/Chapman & Hall, London (1993)

    Google Scholar 

  15. Munson, J.C., Khoshgoftaar, T.M.: Software Metrics for Reliability Assessment. In: Handbook of Software Reliability and System Reliability, McGraw-Hill, Hightstown (1996)

    Google Scholar 

  16. Dick, S., Meeks, A., Last, M., Bunke, H., Kandel, A.: Data Mining in Software Metrics Databases. Fuzzy Sets and Systems 145(1), 81–110 (2004)

    Article  MathSciNet  Google Scholar 

  17. Pedrycz, W., Succi, G., Musilek, P., Bai, X.: Using Self-Organizing Maps to Analyze Object Oriented Software Measures. J. of Systems and Software 59, 65–82 (2001)

    Article  Google Scholar 

  18. Simpson, P.K.: Fuzzy Min-Max Neural Networks. Part 1: Classification. IEEE Trans. Neural Networks 3, 776–786 (1992)

    Article  Google Scholar 

  19. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms. John Wiley &Sons Inc., New York (1993)

    MATH  Google Scholar 

  20. Subramanyan, R., Krishnan, M.S.: Empirical Analysis of CK Metrics for Object-Oriented Design Complexity: Implications for Software Defects. IEEE Trans. Software Eng. 29, 297–310 (2003)

    Article  Google Scholar 

  21. Nabney, I.T.: Netlab: Algorithms for Pattern Recognition, pp. 79–113. Springer, Heidelberg (2001)

    Google Scholar 

  22. Ali, G.N., Chiang, P.-J., Mikkilineni, A.K., Chiu, G.T.-C., Allebach, J.P., Delp, E.J.: Application of principal components analysis and Gaussian mixture models to printer identification. In: Proceedings of the IS&T’s NIP20: International Conference on Digital Printing Technologies, pp. 301–305 (2004)

    Google Scholar 

  23. Render, R.A., Walker, H.F.: Mixture Densities, maximum likelihood, and EM algorithm. SIAM review 26(2), 195–239 (1984)

    Article  MathSciNet  Google Scholar 

  24. Permuter, H., Francos, J.M., Jermyn, I.H.: Gaussian Mixture Models of Texture and Colour for Image Database Retrieval. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Hong Kong (April 2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jin, X., Liu, Y., Ren, J., Xu, A., Bie, R. (2006). Locality Preserving Projection on Source Code Metrics for Improved Software Maintainability. In: Sattar, A., Kang, Bh. (eds) AI 2006: Advances in Artificial Intelligence. AI 2006. Lecture Notes in Computer Science(), vol 4304. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11941439_92

Download citation

  • DOI: https://doi.org/10.1007/11941439_92

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49787-5

  • Online ISBN: 978-3-540-49788-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics