Skip to main content

A Distributed Simulation-Based Computational Intelligence Algorithm for Nanoscale Semiconductor Device Inverse Problem

  • Conference paper
Frontiers of High Performance Computing and Networking – ISPA 2006 Workshops (ISPA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4331))

  • 537 Accesses

Abstract

In this paper, a distributed simulation-based computational intelligence algorithm for inverse problem of nanoscale semiconductor device is presented. This approach features a simulation-based optimization strategy, and mainly integrates the semiconductor process simulation, semiconductor device simulation, evolutionary strategy, and empirical knowledge on a distributed computing environment. For a set of given target current-voltage (I-V) curves of metal-oxide-semiconductor field effect transistors (MOSFETs) devices, the developed prototype executes evolutionary tasks to solve an inverse doping profile problem, and therefore optimize fabrication recipes. In the evolutionary loop, the established management server allocates the jobs of process simulation and device simulation on a PC-based Linux cluster with message passing interface (MPI) libraries. Good benchmark results including the speed-up, the load balancing, and the parallel efficiency are presented. Computed results, compared with the realistic measured data of 65 nm n-type MOSFET, show the accuracy and robustness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, Y., Chou, H.-M., Lee, J.-W.: Investigation of Electrical Characteristics on Surround-ing-Gate and Omega-Shaped-Gate Nanowire FinFETs. IEEE Trans. Nanotech. 4, 510–516 (2005)

    Article  Google Scholar 

  2. Li, Y., Chou, H.-M.: A Comparative Study of Electrical Characteristic on Sub-10 nm Dou-ble Gate MOSFETs. IEEE Trans. Nanotech. 4, 645–647 (2005)

    Article  Google Scholar 

  3. Li, Y., Yu, S.-M.: A Two-Dimensional Quantum Transport Simulation of Nanoscale Dou-ble-Gate MOSFETs using Parallel Adaptive Technique. IEICE Trans. Inf. Syst. E87-D, 1751–1758 (2004)

    Google Scholar 

  4. Li, Y.: A Parallel Monotone Iterative Method for the Numerical Solution of Multidimen-sional Semiconductor Poisson Equation. Comput. Phys. Commun. 153, 359–372 (2003)

    Article  MATH  Google Scholar 

  5. Li, Y., Sze, S.M., Chao, T.-S.: A Practical Implementation of Parallel Dynamic Load Balanc-ing for Adaptive Computing in VLSI Device Simulation. Eng. Comput. 18, 124–137 (2002)

    Article  Google Scholar 

  6. Li, Y., Liu, J.-L., Chao, T.-S., Sze, S.M.: A new parallel adaptive finite volume method for the numerical simulation of semiconductor devices. Comput. Phys. Commun. 142, 285–289 (2001)

    Article  MATH  Google Scholar 

  7. Binder, T., Heitzinger, C., Selberherr, S.: A Study on Global and Local Optimization Techniques for TCAD Analysis Tasks. IEEE Trans. CAD. 23, 814–822 (2004)

    Article  Google Scholar 

  8. Li, Y., Yu, S.-M., Chen, C.-K.: A Simulation-Based Evolutionary Technique for Inverse Problems of Sub-65nm CMOS Devices. In: Kosina, H., Selberherr, S. (eds.) Book of Abstracts of the 11th International Workshop on Computational Electronics. Technische Uni-versitat Wien (TU Wien), Institute for Microelectronics, Vienna, Austria, pp. 69–70 (2006)

    Google Scholar 

  9. Dupre, L., Slodicka, M.: Inverse problem for magnetic sensors based on a Preisach formalism. IEEE Trans. Mag. 40, 1120–1123 (2004)

    Article  Google Scholar 

  10. Li, Y., Yu, S.-M.: Comparison of Random Dopant-Induced Threshold Voltage Fluctua-tions in Nanoscale Single-, Double-, and Surrounding-Gate Field Effect Transistors. Jpn. J. Appl. Phys. 45, 6860–6865 (2006)

    Article  MathSciNet  Google Scholar 

  11. Li, Y., Yu, S.-M.: Study of Threshold Voltage Fluctuations of Nanoscale Double Gate Metal-Oxide-Semiconductor Field Effect Transistors Using Quantum Correction Simulation. J. Comput. Elec. 5, 125–129 (2006)

    Article  Google Scholar 

  12. Li, Y., Chou, Y.-S.: A Novel Statistical Methodology for Sub-100 nm MOSFET Fabrication Optimization and Sensitivity Analysis. In: Extended Abstract of the 2005 Int. Conf. Solid State Devices and Materials, pp. 622–623 (2005)

    Google Scholar 

  13. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Boston (2000)

    MATH  Google Scholar 

  14. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, New York (1989)

    MATH  Google Scholar 

  15. Thierauf, G., Cai, J.: Parallel evolution strategy for solving structural optimization. Eng. Struct. 19, 318–324 (1997)

    Article  Google Scholar 

  16. Schoneveld, A., de Ronde, J.F., Sloot, P.M.A.: Task Allocation by Parallel Evolutionary Computing. J. Paral. Distribu. Comput. 47, 91–97 (1997)

    Article  Google Scholar 

  17. Migdalas, A., Toraldo, G., Kumar, V.: Nonlinear optimization and parallel computing. Paral. Comput. 29, 375–391 (2003)

    Article  MathSciNet  Google Scholar 

  18. Van Veldhuizen, D.A., Zydallis, J.B., Lamont, G.B.: Evolutionary computing and optimization: Issues in parallelizing multiobjective evolutionary algorithms for real world applications. In: Proc. ACM Symp. Appl. Computing, pp. 595–602 (2002)

    Google Scholar 

  19. Nanda, P.K., Ghose, B., Swain, T.N.: Parallel genetic algorithm based unsupervised scheme for extraction of power frequency signals in the steel industry. IEE Proc.: Vision, Image and Signal Processing 149, 204–210 (2002)

    Article  Google Scholar 

  20. Lee, C.-H., Parl, K.-H., Kim, J.-H.: Hybrid parallel, evolutionary algorithms for con-strained optimization utilizing PC clustering. In: Proc. Congress on Evolutionary Computation, vol. 2, pp. 1436–1441 (2001)

    Google Scholar 

  21. Cantú-Paz, E., Goldberg, D.E.: Efficient parallel genetic algorithms: theory and practice. Comput. Meth. Appl. Mech. Eng. 186, 221–238 (2000)

    Article  MATH  Google Scholar 

  22. High, K.A., LaRoche, R.D.: Parallel nonlinear optimization techniques for chemical process design problems. Comput. Chemical Eng. 19, 807–825 (1995)

    Article  Google Scholar 

  23. Li, Y., Cho, Y.-Y.: Intelligent BSIM4 Model Parameter Extraction for Sub-100 nm Mosfet Era. Jpn. J. Appl. Phys. 43, 1717–1722 (2004)

    Article  Google Scholar 

  24. Li, Y.: A Hybrid Intelligent Computational Methodology for Semiconductor Device Equivalent Circuit Model Parameter Extraction. In: Anile, A.M., Alì, G., Mascali, G. (eds.) Scientific Computing in Electrical Engineering, pp. 345–350. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, Y., Chen, CK. (2006). A Distributed Simulation-Based Computational Intelligence Algorithm for Nanoscale Semiconductor Device Inverse Problem. In: Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G. (eds) Frontiers of High Performance Computing and Networking – ISPA 2006 Workshops. ISPA 2006. Lecture Notes in Computer Science, vol 4331. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11942634_25

Download citation

  • DOI: https://doi.org/10.1007/11942634_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49860-5

  • Online ISBN: 978-3-540-49862-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics