Skip to main content

Skipping Face Routing with Guaranteed Message Delivery for Wireless Ad Hoc and Sensor Networks

  • Conference paper
Book cover Mobile Ad-hoc and Sensor Networks (MSN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4325))

Included in the following conference series:

Abstract

Location-based routing techniques, greedy routing and face routing, route data by using the location information of wireless nodes. Greedy routing efficiently routes data in dense networks by giving short hop paths, but it does not guarantee message delivery. Face routing has been designed and combined with greedy routing to achieve both transmission efficiency and guaranteed message delivery. The existing face routing algorithms mainly works on three types of planar graphs: Gabriel graph, relative neighborhood graph, and Delaunay triangulation. One major observation is that each transmission in face routing only can pass message over a short distance, resulting in that the existing face routing traverses long hop paths to destinations. In this paper, we present a Skip Face Routing (SFR) to reduce the face traversal cost incurred in the existing approaches. By using simulation studies, we show that SFR significantly increases routing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kleinrock, L., Silvester, J.: Optimum Transmission Radii for Packet Radio Networks or why Six is a Magic Number. In: Conference Record, National Telecommunications Conference, December 1978, pp. 432–435 (1978)

    Google Scholar 

  2. Finn, G.G.: Routing and Addressing Problems in Large Metropolitan-scale Internetworks. ISI Research Report ISU/RR-87-180 (1987)

    Google Scholar 

  3. Kranakis, E., Singh, H., Urrutia, J.: Compass Routing on Geometric Networks. In: Proc. Canadian Conference on Computational Geometry, Vancouver (August 1999)

    Google Scholar 

  4. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with Guaranteed Delivery in Ad Hoc Wireless Networks. In: Proc. ACM Int. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications DIAL M99, pp. 48–55 (1999)

    Google Scholar 

  5. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with Guaranteed Delivery in Ad Hoc Wireless Networks. ACM Wireless Networks 7(6), 609–616 (2001)

    Article  MATH  Google Scholar 

  6. Karp, B., Kung, H.T.: GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. In: Proc. ACM/IEEE MOBICOM, August 2000, pp. 243–254 (2000)

    Google Scholar 

  7. Kuhn, F., Wattenhofer, R., Zollinger, A.: Asymptotically Optimal Geometric Mobile Ad-Hoc Routing. In: Proc. Int. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, pp. 24–33. ACM Press, New York (2002)

    Chapter  Google Scholar 

  8. Kuhn, F., Wattenhofer, R., Zollinger, A.: Worst-Case Optimal and Average-Case Efficient Geometric Ad-Hoc Routing. In: Proc. MobiHoc (2003)

    Google Scholar 

  9. Kuhn, F., Wattenhofer, R., Zhang, Y., Zollinger, A.: Geometric Ad-hoc Routing: Of Theory and Practice. In: Proc. PODC (2003)

    Google Scholar 

  10. Al-Karaki, J.N., Kamal, A.E.: Routing Techniques in Wireless Sensor Networks: A Survey. IEEE Wireless Communication 11(6), 6–28 (2004)

    Article  Google Scholar 

  11. Liu, J.: A Distributed Routing Algorithm in Mobile Packet Radio Networks. University of Illinois, Urbana, TR (1980)

    Google Scholar 

  12. Nelson, R., Kleinrock, L.: The Spatial Capacity of a Slotted ALOHA Miltihop Packet Radio Network with Capture. IEEE TON 32(6), 649–684 (1984)

    Google Scholar 

  13. Takagi, H., Kleinrock, L.: Optimal Transmission Ranges for Randomly Distributed Packet Radio Terminals. IEEE TON 32(3), 246–257 (1984)

    Google Scholar 

  14. Zorzi, M., Rao, R.R.: Geographic Random Forwarding (GeRaF) for Ad Hoc and Sensor Networks: Multi-hop Performance. IEEE TMC 2(4), 337–348 (2003)

    Google Scholar 

  15. Stojmenovic, I.: Geocasting with Guaranteed Delivery in Sensor Networks. IEEE Wireless Communications 11(6), 29–37 (2004)

    Article  Google Scholar 

  16. Li, X., Calinescu, G., Wan, P., Wang, Y.: Localized Delaunay Triangulation with Applications in Ad Hoc Wireless Networks. IEEE TPDS 14, 1035–1047 (2003)

    Google Scholar 

  17. Calinescu, G.: Computing 2-hop neighborhoods in ad hoc wireless networks. In: Pierre, S., Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 175–186. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)

    Google Scholar 

  19. Lian, J., Naik, K., Agnew, G.: Data Capacity Improvement of Wireless Sensor Networks Using Non-Uniform Sensor Distribution. International Journal of Distributed Sensor Networks (2005)

    Google Scholar 

  20. Giordano, S., Stojmenovic, I.: Position Based Routing Algorithms for Ad Hoc Networks: A Taxonomy. In: Ad Hoc Wireless Networking, pp. 103–136. Kluwer, Dordrecht (2004)

    Google Scholar 

  21. Liu, Y., Xiao, L., Liu, X., Ni, L.M., Zhang, X.: Location Awareness in Unstructured Peer-to-Peer Systems. IEEE TPDS 16(2), 163–174 (2005)

    Google Scholar 

  22. Datta, S., Stojmenovic, I., Wu, J.: Internal node and shortcut based routing with guaranteed delivery in wireless networks. Cluster Computing 5(2), 169–178 (2002)

    Article  Google Scholar 

  23. Ni, L.M., Liu, Y., Lau, Y., Patil, A.: LANDMARC: Indoor Location Sensing Using Active RFID. ACM Wireless Networks 10(6), 701–710 (2004)

    Article  Google Scholar 

  24. Boone, P., Chávez, E., Gleitzky, L., Kranakis, E., Opatrny, J., Salazar, G., Urrutia, J.: Morelia Test: Improving the Efficiency of the Gabriel Test and Face Routing in Ad-Hoc Networks. In: Kralovic, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 23–34. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Xue, W., Luo, Q., Chen, L., Liu, Y.: Contour Map Matching For Event Detection in Sensor Networks. In: Proc. ACM SIGMOD (June 2006)

    Google Scholar 

  26. Wu, J., Li, H.: On calculating Connected Dominating Set for Efficient Routing in Ad Hoc Wireless Networks. Telecommunication Systems 18(1-3), 13–36 (2001)

    Article  MATH  Google Scholar 

  27. Stojmenovic, Seddigh, M., Zunic, J.: Dominating Sets and Neighbor Elimination-Based Broadcasting Algorithms in Wireless Networks. IEEE TPDS 13(1), 14–25 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lian, J., Naik, K. (2006). Skipping Face Routing with Guaranteed Message Delivery for Wireless Ad Hoc and Sensor Networks. In: Cao, J., Stojmenovic, I., Jia, X., Das, S.K. (eds) Mobile Ad-hoc and Sensor Networks. MSN 2006. Lecture Notes in Computer Science, vol 4325. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11943952_5

Download citation

  • DOI: https://doi.org/10.1007/11943952_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49932-9

  • Online ISBN: 978-3-540-49933-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics