
On Decidability of LTL Model Checking
for Process Rewrite Systems

Laura Bozzelli1, Mojmı́r Křetı́nský2, Vojtěch Řehák2, and Jan Strejček2

1 Dipartimento di Matematica e Apllicazioni, Università degli Studi di Napoli “Federico II”,
Via Cintia, 80126 Napoli, Italy, laura.bozzelli@dma.unina.it

2 Faculty of Informatics, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic,�
kretinsky,rehak,strecek � @fi.muni.cz

Abstract. We establish a decidability boundary of the model checking problem
for infinite-state systems defined by Process Rewrite Systems (PRS) or weakly ex-
tended Process Rewrite Systems (wPRS), and properties described by basic frag-
ments of action-based Linear Temporal Logic (LTL). It is known that the problem
for general LTL properties is decidable for Petri nets and for pushdown processes,
while it is undecidable for PA processes. As our main result, we show that the
problem is decidable for wPRS if we consider properties defined by formulae
with only modalities strict eventually and strict always. Moreover, we show that
the problem remains undecidable for PA processes even with respect to the LTL
fragment with the only modality until or the fragment with modalities next and
infinitely often.

1 Introduction

Automatic verification of current software systems often needs to model them as
infinite-state systems. One of the most powerful formalisms for description of infinite-
state systems (except formalisms with Turing power for which nearly all interesting ver-
ification problems are undecidable) is called Process Rewrite Systems (PRS) [May00].
The PRS framework, based on term rewriting, subsumes many formalisms studied in
the context of formal verification, e.g. Petri nets (PN), pushdown processes (PDA),
and process algebras like BPA, BPP, or PA. PRS can be adopted as a formal model
for programs with recursive procedures and restricted forms of dynamic creation and
synchronization of concurrent processes. A substantial advantage of PRS is that some
important verification problems are decidable for the whole PRS class. In particular,
Mayr [May00] proved that the reachability problem (whether a given state is reachable)
and the reachable property problem (whether there is a reachable state where some
given actions are enabled and some given actions are disabled) are decidable for PRS.

In [KŘS04b], we have presented weakly extended PRS (wPRS), where a finite-state
control unit with self-loops as the only loops is added to the standard PRS formalism
(addition of a general finite-state control unit makes PRS Turing powerful). This control
unit enriches PRS by abilities to model a bounded number of arbitrary communication
events and global variables whose values are changed only a bounded number of times
during any computation. We have proved that the reachability problem remains decid-
able for wPRS [KŘS04a] and that the problem called reachability Hennessy–Milner

property (whether there is a reachable state satisfying a given Hennessy–Milner for-
mula) is decidable for wPRS as well [KŘS05]. The hierarchy of all PRS and wPRS
classes is depicted in Figure 1.

Concerning the model checking problem, a broad overview of (un)decidability re-
sults for subclasses of PRS and various temporal logics can be found in [May98]. Here
we focus exclusively on (future) Linear Temporal Logic (LTL). It is known that LTL
model checking of PDA is EXPTIME-complete [BEM97]. LTL model checking of PN
is also decidable, but at least as hard as the reachability problem for PN [Esp94] (the
reachability problem is EXPSPACE-hard [May84,Lip76] and no primitive recursive up-
per bound is known). If we consider only infinite runs, then the problem for PN is
EXPSPACE-complete [Hab97,May98].

Conversely, LTL model checking is undecidable for all classes subsuming
PA [BH96,May98]. So far, there are only two positive results for these classes. Bouaj-
jani and Habermehl [BH96] have identified a fragment called simple PLTL � for which
model checking of infinite runs is decidable for PA (strictly speaking, simple PLTL � is
not a fragment of LTL as it can express also some non-regular properties, while LTL
cannot). Only recently, we have demonstrated that model checking of infinite runs is de-
cidable for PRS and the fragment of LTL capturing exactly fairness properties [Boz05].

Our contribution: This paper completely locates the decidability boundary of the
model checking problem for all subclasses of PRS (and wPRS) and all basic LTL frag-
ments, where a basic LTL fragment is a set of all formulae containing only a given subset
of standard modalities. The boundary is depicted in Figure 2. To locate the boundary,
we show the following results.

1. We introduce a new LTL fragment A and prove that every formula of the basic
fragment LTL

���������	��

(i.e. the fragment with modalities strict eventually and strict

always only) can be effectively translated into A . As LTL
��������	��

is closed under
negation, we can also translate LTL

���������	��

formulae into negated formulae of A .

2. We show that model checking (of both finite and infinite runs) of wPRS against
negated formulae of A is decidable. The proof employs our results presented
in [Boz05,KŘS04a,KŘS05] to reduce the problem to LTL model checking for PDA
and PN. Thus we get decidability of model checking for wPRS against LTL

���������	��

.

Note that LTL
���������	��

is strictly more expressive than the Lamport logic (i.e. the ba-
sic fragment with modalities eventually and always), which is again strictly more
expressive than the mentioned fragment of fairness properties and also than the
regular part of simple PLTL � .

3. We demonstrate that the model checking problem remains undecidable for PA even
if we consider the basic fragment with modality until or the basic fragment with
modalities next and infinitely often (which is strictly less expressive than the one
with next and eventually).

The paper is organized as follows. The following section recalls basic definitions.
Sections 3, 4, and 5 correspond, respectively, to the three results listed above. The last
section discuss other potential applications of our results and it contains an open ques-
tion driving our future research. Proofs are only sketched due to space constraints. Full
proofs can be found in [BKŘS06].

2 Preliminaries

2.1 PRS and its extensions

Let Const � �
X
���������

be a set of process constants. The set of process terms t is defined
by the abstract syntax t :: ���
	 X 	 t

�
t 	 t � t, where � is the empty term, X � Const,

and ’
�
’ and ’ � ’ mean sequential and parallel compositions, respectively. We always

work with equivalence classes of terms modulo commutativity and associativity of ’ � ’,
associativity of ’

�
’, and neutrality of � , i.e. � � t � t

� �� t ���� t. We distinguish four
classes of process terms as:

1 – terms consisting of a single process constant, in particular, ���� 1,
S – sequential terms - terms without parallel composition, e.g. X

�
Y
�
Z,

P – parallel terms - terms without sequential composition, e.g. X � Y � Z,
G – general terms - terms without any restrictions, e.g.

�
X
� �

Y � Z
�
 � W .

Let M � �
o
�
p
�
q
���������

be a set of control states, � be a partial ordering on this set,
and Act � �

a
�
b
�
c
���������

be a set of actions. Let � ��� � � 1 � S �
P
�
G
�

be classes of process
terms such that ��� �

. An
� � ���
 -wPRS (weakly extended process rewrite system) � is

a tuple
�
R
�
p0

�
X0

, where

– R is a finite set of rewrite rules of the form
�
p
�
t1

 a� � �

q
�
t2

, where t1 ��� , t1 ���� ,

t2 � � , a � Act, and p
�
q � M are control states satisfying p � q,

– the pair
�
p0

�
X0

 � M � Const forms the distinguished initial state.

By Act
� �
 , Const

� �
 , and M
� �
 we denote the sets of actions, process constants, and

control states occurring in the rewrite rules or the initial state of � , respectively.
An (� ���)-wPRS ��� �

R
�
p0

�
X0

induces a labelled transition system, whose states

are pairs
�
p
�
t

such that p � M
� �
 is a control state and t � � is a process term over

Const
� �
 . The transition relation � �! is the least relation satisfying the following in-

ference rules:
���

p
�
t1

 a� � �

q
�
t2

�
 �"��

p
�
t1

 a� � �

q
�
t2

�
p
�
t1

 a� � �

q
�
t2

�
p
�
t1 � t #1
 a� � �

q
�
t2 � t #1

�
p
�
t1

 a� � �

q
�
t2

�
p
�
t1
�
t #1
 a� � �

q
�
t2
�
t #1

Sometimes we write � � instead of � � if � is clear from the context. The transition
relation can be extended to finite words over Act in a standard way. To shorten our
notation we write pt in lieu of

�
p
�
t

. A state pt is called terminal, written pt �� �
 , if

there is no state p # t # and action a such that pt
a� � p # t # . In this paper we always consider

only systems where the initial state is not terminal. A (finite or infinite) sequence

$ � p1t1
a1� � p2t2

a2� � ����� an� � pn % 1tn % 1

&
an ' 1� � ������(

is called derivation over the word u � a1a2
�����

an
�
an % 1

�����

in � . Finite derivations are

also denoted as p1t1
u� � pn % 1tn % 1, infinite as p1t1

u� � . A derivation in � is called
a run of � if it starts in the initial state p0X0 and it is either infinite, or its last state is
terminal. Further, L

� �
 denotes the set of words u such that there is a run of � over u.

wPRS

� � � � � � � � � � � � � � � �

����������������

PRS
(G � G)-PRS

� � � � � � � � � � � � �

�������������

wPAD

���������������� wPAN

� � � � � � � � � � � � � � �

PAD
(S � G)-PRS

�������������
PAN

(P� G)-PRS

� � � � � � � � � � � � �

wPA

� � � � � � � � � � � � � � � �

���������������

wPDA=PDA
(S � S)-PRS

PA
(1 � G)-PRS

� � � � � � � � � � � � �

�������������
wPN=PN
(P� P)-PRS

wBPA wBPP

BPA
(1 � S)-PRS

������������� BPP
(1 � P)-PRS

� � � � � � � � � � � �

wFS=FS
(1 � 1)-PRS

Fig. 1. The hierarchy of PRS and wPRS subclasses.

An (� ���)-wPRS � where M
� �
 is a singleton is called

� � ���

-PRS (process rewrite

system) [May00]. In such systems we omit the single control state from rules and states.
Some classes of (� ���

)-PRS correspond to widely known models, namely finite-state
systems (FS), basic process algebras (BPA), basic parallel processes (BPP), process al-
gebras (PA), pushdown processes (PDA), and Petri nets (PN). The other classes have
been named as PAD, PAN, and PRS. The relations between (� ���

)-PRS and the men-
tioned formalisms and names are indicated in Figure 1. Instead of (� ���

)-wPRS we
juxtapose the prefix ‘w-’ with the acronym corresponding to the (� ���)-PRS class. For
example, we use wBPA rather than (1

�
S)-wPRS. Figure 1 shows the expressiveness

hierarchy of all considered classes, where expressive power of a class is measured by
the set of transition systems that are definable (up to the strong bisimulation equiva-
lence [Mil89]) by the class. This hierarchy is strict, with a potential exception concern-
ing the classes wPRS and PRS, where the strictness is just our conjecture. For details
see [KŘS04b,KŘS04a].

For technical reasons, we define a normal form of wPRS systems. A rewrite rule is
parallel or sequential if it has one of the following forms:

Parallel rules: pX1 � X2 � ����� � Xn
a� � qY1 � Y2 � ����� � Ym

Sequential rules: pX
a� � qY

�
Z pX

�
Y

a� � qZ pX
a� � qY pX

a� � q �
where X

�
Y
�
Xi

�
Yj

�
Z � Const, p

�
q � M, n

	 0, m
 0, and a � Act. A rule is called trivial

if it is both parallel and sequential (i.e. it has the form pX
a� � qY or pX

a� � q �). A wPRS� is in normal form if it has only parallel and sequential rewrite rules.

2.2 Linear Temporal Logic (LTL) and studied problems

The syntax of Linear Temporal Logic (LTL) [Pnu77] is defined as follows

� :: � tt 	 a 	�� � 	 ����� 	�� � 	 �	��� ,

where a ranges over Act, � is called next, and � is called until. The logic is in-
terpreted over infinite as well as nonempty finite words of actions. Given a word
u � u

�
0

u
�
1

u
�
2

 ����� � Act
�� Act , 	 u 	 denotes the length of the word (we set 	 u 	���� if u

is infinite). For all 0 � i � 	 u 	 , by ui we denote the ith suffix of u, i.e. ui � u
�
i

u
�
i � 1

 �����
.

The semantics of LTL formulae is defined inductively as follows:

u 	 � tt
u 	 � a iff u

�
0

 � a

u 	 ��� � iff u �	 � �
u 	 � � 1

���
2 iff u 	 � � 1 and u 	 � � 2

u 	 ��� � iff 	 u 	 	 1 and u1 	 � �
u 	 � � 1

���
2 iff � 0 � i � 	 u 	 ��� ui 	 � � 2 and � 0 � j � i

�
u j 	 � � 1

We say that a nonempty word u satisfies � whenever u 	 � � . Given a set of words L,
we write L 	 � � if u 	 � � holds for all u � L. We say that a derivation (or run) $ over a
word u satisfies � , written $ 	 � � , whenever u 	 � � .

Moreover, we define the following modalities:
� � (eventually) standing for tt ��� ,� � (always) standing for � � � � ,

��� � (strict eventually) standing for � � � ,
� � � (strict

always) standing for � � � � � ,
� � � (infinitely often) standing for

� � � ,
�� � (almost always)

standing for �
� � � � . Note that

� � is equivalent to ��� ��� � but
��� � cannot be expressed

with
�

as the only modality. Thus
���

is “stronger” than
�
. The relation between

� �
and�

is similar.
For a set

�
O1

���������
On
�

of modalities, LTL
�
O1

���������
On

denotes the LTL fragment

containing all formulae with modalities O1
���������

On only. Such a fragment is called ba-
sic. Figure 2 shows an expressiveness hierarchy of all studied basic LTL fragments.
Indeed, every basic LTL fragment using standard3 future modalities is equivalent to
one of the fragments in the hierarchy, where equivalence between fragments means that
every formula of one fragment can be effectively translated into a semantically equiva-
lent formula of the other fragment and vice versa. For example, LTL

��������	��
��
LTL

������

.

Further, the hierarchy is strict. For detailed information about expressiveness of future
LTL modalities and LTL fragments we refer to [Str04].

Let F be an LTL fragment and C be a class of wPRS systems. The model checking
problem for F and C is to decide whether a given formula � � F and a given system� � C satisfies L

� �
 	 � � . We also mention the problem called model checking of infinite
runs, where L

� �
�� Act 	 � � is examined.

3 By standard modalities we mean the ones defined in this paper and also other commonly used
modalities like strict until, release, weak until, etc. However, it is well possible that one can
define a new modality such that there is a basic fragment not equivalent to any of the fragments
in the hierarchy.

LTL ���������
	 	 	 	 	 	 	 	 	

	 	

LTL ��������

��������
��� LTL ������� � �

� � � � � � � � �
� � � �

LTL ��� � �����

��� ���

���
�� ��� �
LTL ��� � ��� LTL ��� � �! � �

""""""""""
"""" LTL ���#�$��%

�&�'�'�&�(
undecidable for PA

decidable for PDA and PN)
decidable for wPRS

������������ *,+
-/.

LTL ���/��� LTL ����0 #�
LTL �1���

��������
���� LTL �2� � �

� � � � � � � � �
� � � � � �

LTL �3�
Fig. 2. The hierarchy of basic fragments with model checking decidability boundary.

3 Fragment A and translation of LTL 46587:96;<7>= into A
The A fragment consists of finite disjunctions of � -formulae defined as follows.

Recall that LTL
�

denotes the fragment of formulae without any modality,
i.e. boolean combinations of actions. In the following we use � 1

� % � 2 to abbreviate�
1
� � � �

1
���

2

. Let ? �'@ 1O1 @ 2O2

����� @ nOn @ n % 1, where n 	 0, each @ i � LTL
�

, On is
‘ � �	�

’, and, for each i � n, Oi is either ‘ � ’ or ‘ � % ’ or ‘ � � ’. Further, let B � LTL
�

be
a finite set. An � -formula is defined as

� � ? � B
 �BA�@ 1O1
� @ 2O2

������� @ nOn @ n % 1

 �����
DC �FEGIH B

�	�����!J

Hence, a word u satisfies � � ? � B

iff u can be written as u1

�
u2
�LKDKLK �

un % 1, where

– each ui consists only of actions satisfying @ i andM 	 ui 	
 0 if i � n � 1 or Oi is ‘ � ’,M 	 ui 	 	 0 if Oi is ‘ � % ’,M 	 ui 	 � 1 if Oi is ‘ � � ’ or ‘ � � �
’,

– and un % 1 satisfies
� � � � J

for every
J � B .

Proof of the following lemma is a simple exercise.

Lemma 1. A conjunction of � -formulae can be effectively converted into an equivalent
disjunction of � -formulae.

Theorem 2. Every LTL
���������	��

formula can be translated into an equivalent disjunc-
tion of � -formulae.

Proof (Sketch). Given an LTL
���������	��

formula � , we construct a finite set A � of � -
formulae such that � is equivalent to disjunction of formulae in A � . The proof proceeds
by induction on the length of � . The base case shows that the theorem holds for all
formulae of LTL

�

. The inductive step is done by a detailed analysis of the structure of� (it distinguishes 19 cases). ��

4 Model checking of wPRS against negated A
This section is devoted to decidability of the model checking problem for wPRS and
negated formulae of the A fragment. In fact, we prove decidability of the dual problem,
i.e. whether a given wPRS system has a run satisfying a given formula of A . Finite and
infinite runs are treated separately.

Theorem 3. The problem whether a given wPRS system has a finite run satisfying a
given � -formula is decidable.

Proof (Sketch). The problem is reduced to the reachability Hennessy–Milner property
problem, which is decidable for wPRS [KŘS05]. ��

The problem for infinite runs is more complicated. In order to solve it, we introduce
more terminology and notation. First we define

�
-formulae and regular languages called� -languages. Let w � a1O1a2O2

�����
anOn, where n
 0, a1

���������
an � Act are pairwise

distinct actions and each Oi is either ‘ � % ’ or ‘ � � ’. Further, let B � Act � � a1
���������

an
�

be a nonempty finite set of actions and C � B. A
�
-formula

� �
w
�
B
�
C

and � -language� � w �
C

are defined as
� �

w
�
B
�
C

 � A a1O1

�
a2O2

�������
anOn

���
b H B

b

 �����
 C � E

b H C

� �
b � E

b H B � C

���
b � � � �

b

� � w �
C

 � ao1

1
�
ao2

2
�LKDKLK �

aon
n
�
L,

where oi �	� � if Oi � � %
1 if Oi � � � and L �
� � � � if C ����

b H C C
 � b �C
 otherwise

Roughly speaking, a
�

-formula is a more restrictive version of an � -formula and in
context of

�
-formulae we consider infinite words only. Contrary to ? of an � -formula,

w of a
�
-formula employs actions rather than LTL

�

formulae. While a tail of an infinite

word satisfying an � -formula is specified by @ n % 1, in the definition of
�

-formulae we
use a set B containing exactly all the actions of the tail and its subset C of exactly all
actions occurring infinitely many times in the tail.

Note that an infinite word satisfies a formula
� �

w
�
B
�
C

if and only if it can be
divided into a prefix u � � � w �

B

and a suffix v � C such that v contains infinitely many
occurrences of every c � C.

Let w
�
B
�
C be defined as above. We say that a finite derivation $ over a word u

satisfies � � w �
C

if and only if u � � � w �
C

. We write

�
w # � B #
�� �

w
�
B

whenever B # � B
and w # � ai1Oi1ai2Oi2

�����
aik Oik for some 1 � i1 � i2 �

����� � ik � n. Moreover, we write�
w # � B # � C #
�� �

w
�
B
�
C

whenever
�
w # � B #
�� �

w
�
B

, B # is nonempty, and C # � C

�
B # .

Remark 4. If u is an infinite word satisfying
� �

w
�
B
�
C

and v is an infinite subword
of u (i.e. it arises from u by omitting some letters), then there is exactly one triple�
w # � B # � C #
 � �

w
�
B
�
C

such that v 	 � � �
w # � B # � C #
 . Further, for each finite subword v of

u, there is exactly one pair
�
w # � B #
 such that

�
w # � B #
�� �

w
�
B

and v � � � w # � B #
 .
Given a PRS in normal form, by tri

� �
 , par
� �
 , and seq

� �
 we denote the system� restricted to trivial, parallel, and sequential rules, respectively. A derivation in tri
� �

is called a trivial derivation in � . In the following we write simply tri
�
par

�
seq as � is

always clearly determined by the context.

Definition 5. Let � be a PRS in normal form and
� �

w
�
B
�
C

be a
�

-formula. The PRS� is in flat
�
w
�
B
�
C

-form if and only if for each X

�
Y � Const

� �
 , each
�
w # � B # � C #
 ��

w
�
B
�
C

, and each B # # � B, the following conditions hold:

1. If there is a finite derivation X
u� � Y satisfying � � w # � B # #
 , then there is also a finite

derivation X
v� � tri Y satisfying � � w # � B # #
 .

2. If there is a term t and a finite derivation X
u� � t satisfying � � w # � B # #
 , then there is

also a constant Z and a finite derivation X
v� � tri Z satisfying � � w # � B # #
 .

3. If w # � � and there is an infinite derivation X
u� � satisfying

� �
w # � B # � C #
 , then there

is also an infinite derivation X
v� � tri satisfying

� �
w # � B # � C #
 .

4. If there is an infinite derivation X
u� � par satisfying

� �
w # � B # � C #
 , then there is also

an infinite derivation X
v� � tri satisfying

� �
w # � B # � C #
 ;

5. If there is an infinite derivation X
u� � seq satisfying

� �
w # � B # � C #
 , then there is also

an infinite derivation X
v� � tri satisfying

� �
w # � B # � C #
 .

Intuitively, the system is in flat
�
w
�
B
�
C

-form if for every derivation of one of the

listed types there is an “equivalent” trivial derivation. All conditions of the definition
can be checked due to the following lemma, [Boz05], and decidability of LTL model
checking for PDA and PN. Lemma 7 says that every PRS in normal form can be trans-
formed into an “equivalent” flat system. Finally, the Lemma 10 says that if a PRS system
in flat

�
w
�
B
�
C

-form has an infinite derivation satisfying

� �
w
�
B
�
C

, then it has also a

trivial infinite derivation satisfying
� �

w
�
B
�
C

. Note that it is easy to check whether such

a trivial derivation exists.

Lemma 6. Given a � -language � � w �
C

, a PRS system � , and constants X

�
Y, the fol-

lowing problems are decidable:
(i) Is there any derivation X

u� � Y satisfying � � w �
C

?

(ii) Is there any derivation X
u� � t such that t is a term and u � � � w �

C

?

Proof (Sketch). Both problems can be reduced to the reachability problem for wPRS,
which is known to be decidable [KŘS04a]. ��
The proof of the following lemma contains the algorithmic core of this section.

Lemma 7. Let � be a PRS in normal form and
� �

w
�
B
�
C

be a
�

-formula. One can
construct a PRS � # in flat

�
w
�
B
�
C

-form such that for each

�
w # � B # � C #
�� �

w
�
B
�
C

and
each X � Const

� �
 , � # is equivalent to � with respect to the existence of an infinite
derivation starting from X and satisfying

� �
w # � B # � C #
 .

Proof (Sketch). All conditions of Definition 5 can be checked for each X
�
Y � Const

� �
 ,
each

�
w # � B # � C #
 � �

w
�
B
�
C

, and each B # # � B. For Conditions 1 and 2, this follows

from Lemma 6. The problem whether there is an infinite derivation X
u� � satisfying� � � � B # � C #
 is a special case of the fairness problem, which is decidable due to [Boz05].

Finally, Conditions 4 and 5 can be checked due to decidability of LTL model checking
for PDA and PN. If there is a non-satisfied condition, we add some trivial rules forming
the missing derivation. ��
Definition 8 (Subderivation). Let � be a PRS in normal form and $ 1 be a (finite or
infinite) derivation s1

a1� � s2
a2� � �����

, where s1
a1� � s2 has the form X

a1� � Y
�
Z and, for

each i
 2, if si is not the last state of the derivation, then it has the form si � ti
�
Z with

ti �� � . Then $ 1 is called a subderivation of a derivation $ if $ has a suffix $ # satisfying
the following:

1. every transition step in $ # is of the form si � t # ai� � si % 1 � t # or si � t # b� � si � t # # , where

t # b� � t # # ,
2. in $ # , if we replace every step of the form si � t # ai� � si % 1 � t # by step si

ai� � si % 1 and

we skip every step of the form si � t # b� � si � t # # , we get precisely $ 1.

Further, if $ 1 and $ are finite, the last term of $ 1 is a process constant, and $ is a prefix
of a derivation $ # , then $ 1 is also a subderivation of $ # .
Remark 9. Let � be a PRS in normal form and $ be a derivation of � having a suffix $ #
of the form $ # � X � t a� � �

Y
�
Z

 � t u� � . Then, there is a subderivation of $ whose first

transition step X
a� � Y

�
Z corresponds to the first transition step of $ # .

Intuitively, the subderivation captures the behaviour of the subterm Y
�
Z since its emer-

gence until it is possibly reduced to a term without any sequential composition. Due to
the normal form of � , the subterm Y

�
Z behaves undependently on the rest of the term

(as long as it contains a sequential composition).

Lemma 10. Let � be a PRS in flat
�
w
�
B
�
C

-form. Then, the following condition holds

for each X � Const
� �
 and each

�
w # � B # � C #
�� �

w
�
B
�
C

:

If there is an infinite derivation X
u� � satisfying

� �
w # � B # � C #
 , then there is also an

infinite derivation X
v� � tri satisfying

� �
w # � B # � C #
 .

Proof (Sketch). Given an infinite derivation $ satisfying a formula
� � $
 � � �

w # � B # � C #

where

�
w # � B # � C #
 � �

w
�
B
�
C

, by trivial equivalent of $ we mean an infinite trivial

derivation starting in the same term as $ and satisfying
� � $
 . Similarly, given a finite

derivation $ satisfying some � � $
 � � � w # � B #
 where
�
w # � B #
 � �

w
�
B

, by trivial equiva-

lent of $ we mean a finite trivial derivation $ # such that $ # starts in the same term as $,
it satisfies � � $
 , and if the last term of $ is a process constant, then the last term of $ # is
the same process constant.

The lemma is proven by contradiction. We assume that there exist some infinite
derivations violating the condition of the lemma. Let $ be one of these derivations
such that the number of transition steps of $ generated by sequential non-trivial rules

with actions a �� B is minimal (note that this number is always finite as we consider
derivations satisfying

� �
w # � B # � C #
 for some

�
w # � B # � C #
 � �

w
�
B
�
C

). First, we prove that

every subderivation of $ has a trivial equivalent. Then we replace all subderivations of$ by the corresponding trivial equivalents. This step is technically nontrivial because$ may have infinitely many subderivations. By the replacement we obtain an infinite
derivation $ # satisfying

� � $
 and starting in the same process constant as $. Moreover,$ # has no subderivations and hence it does not contain any sequential operator. Flat�
w
�
B
�
C

-form of � (Condition 4) implies that $ # has a trivial equivalent. This is also a

trivial equivalent of $ which means that $ does not violate the condition of our lemma.��
Theorem 11. The problem whether a given PRS � in normal form has an infinite run
satisfying a given formula

� �
w
�
B
�
C

is decidable.

Proof. Due to Lemmata 7 and 10, the problem can be reduced to the problem whether
there is an infinite derivation X

v� � tri satisfying
� �

w
�
B
�
C

. This problem corresponds

to LTL model checking of finite-state systems, which is decidable. ��
The following three steps show that the previous theorem holds even for wPRS and� -formulae. The corresponding theorems and proofs can be found in [BKŘS06].

1. First we prove that the theorem holds even for � -formulae. In the proof we assign a
fresh action a � to each subformula @�� LTL

�

of a given � -formula. For every such@ and every rule t1

a� � t2 of a given PRS in normal form, if a 	 � @ then we add a
rule t1

a �� � t2. Now we replace every @ in the � -formula by a corresponding action
a � . The system with added rules has a run satisfying the resulting formula iff the
original system has a run satisfying the original � -formula. Moreover, the resulting
formula can be easily transformed into a

�
-formula.

2. Now we show that the system � does not have to be in normal form. The proof uses
a modification of the standard algorithm transforming a general PRS system into
an ‘equivalent’ PRS system in normal form [May00].

3. The last step is to move from PRS to wPRS. To remove control states from the
wPRS system � , we replace every rule pt1

a� � pt2 by the rule pt1
ap� � pt2 and every

rule pt1
a� � qt2 by the rule pt1

ap � q� � qt2. In a given � -formula, we replace every
action a with

�
p � q H M � �� � ap

� ap � q

. Let � # be the resulting PRS system and � # the

resulting � -formula. We define a finite set U of � -formulae such that a run of � #
satisfies some formula of U iff it corresponds to a correct behaviour of control unit.
Hence, � has a run satisfying the original � -formula iff � # has a run satisfying � #
in conjunction with one of the � -formulae of U . As conjunction of two � -formulae
can be transformed into equivalent disjunction of � -formulae, we are done.

Theorem 12. The problem whether a given wPRS system has an infinite run satisfying
a given � -formula is decidable.

As LTL
���������	��

is closed under negation, Theorems 2, 3, and 12 give us the following.

Corollary 13. The model checking problem for wPRS and LTL
���������	��

is decidable.

This problem is EXPSPACE-hard due to EXPSPACE-hardness of the model checking
problem for LTL

��� ���

for PN [Hab97]. Our decidability proof does not provide any

primitive recursive upper bound as it employs LTL model checking for PN, for which
no primitive recursive upper bound is known.

5 Undecidability results

Obviously, the model checking for wPRS and LTL
� �
 is decidable. Hence, to prove

that the decidability boundary of Figure 2 is drawn correctly, it remains to show the
following.
Theorem 14. Model checking of PA against LTL

� �
 is undecidable. Model checking

of PA against LTL
� � � � �
 is undecidable as well.

Proof (Sketch). In both cases, the proof is done by reduction from the non-halting prob-
lem for Minsky 2-counter machine. ��
In the proof of the previous theorem, the PA systems constructed there have only infinite
runs. This means that model checking of infinite runs remains undecidable for PA and
both LTL

� � � � �
 and LTL
� �
 .

6 Conclusion

We have established the decidability border of model checking of wPRS classes and ba-
sic fragments of future LTL (see Figure 2) by showing that the model checking problem
of wPRS against LTL

���������	��

is decidable, while the same problem for PA and LTL

� �

or LTL
� � � � �
 is undecidable. So far, only two positive results on LTL model checking of

PA (and classes subsuming PA) have been published: decidability of model checking of
infinite runs for PRS and LTL fragment of fairness properties [Boz05] and decidability
of the same problem for PA and simple PLTL � [BH96]. Note that the fairness fragment
and the regular part of simple PLTL � are strictly less expressive than LTL

��� ���

(also

known as Lamport logic), which is again strictly less expressive than LTL
���������	��

. We
also emphasize that our positive result for LTL

���������	��

deals with both finite and infinite

runs, and with wPRS rather than PRS or PA only.
It is also worth mentioning that our proof techniques differ from those used

in [Boz05] and [BH96]. The decidability proof for LTL
���������	��

is based on the auxiliary
result saying that model checking for wPRS and negated A fragment is decidable. In
fact, this auxiliary result is very powerful. We conjecture that it also implies decidability
of the model checking problem of wPRS and the common fragment of CTL and LTL
called LTLdet [Mai00]. Note that LTLdet is semantically incomparable with LTL

��� � ��� �

.

Unfortunately, our results are insufficient to establish the decidability border for ba-
sic LTL fragments with both future and past modalities. Indeed, fragments LTL

��� � ��� �

and LTL

��� ���

, where

� ��� �
are past counterparts of

� ��� �
respectively, do not semanti-

cally coincide with any fragment of Figure 2 and decidability of the model checking
problem for these two fragments and all wPRS classes subsuming PA is an open ques-
tion. However, we conjecture that our technique can be adopted to answer this question
positively.

Acknowledgment. Authors have been partially supported as follows: M. Křetı́nský
by the Grant Agency of the Czech Republic, grant No. 201/06/1338, V. Řehák
by the research centre “Institute for Theoretical Computer Science (ITI)”, project
No. 1M0545, and J. Strejček by the Academy of Sciences of the Czech Republic, grant
No. 1ET408050503. The paper has been written during J. Strejček’s postdoc stay in
LaBRI, Univeristé Bordeaux 1.

References

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:
Application to model-checking. In Proc. of CONCUR’97, volume 1243 of LNCS,
pages 135–150, 1997.

[BH96] A. Bouajjani and P. Habermehl. Constrained properties, semilinear systems, and petri
nets. In Proc. of CONCUR’96, volume 1119 of LNCS, pages 481–497. Springer, 1996.

[BKŘS06] L. Bozzelli, M. Křetı́nský, V. Řehák, and J. Strejček. On Decidability of LTL Model
Checking for Weakly Extended Process Rewrite Systems. Technical Report FIMU-
RS-2006-05, Faculty of Informatics, Masaryk University, Brno, 2006. A full version
of the paper presented at FSTTCS‘06.

[Boz05] L. Bozzelli. Model checking for process rewrite systems and a class of action-based
regular properties. In Proc. of VMCAI’05, volume 3385 of LNCS, pages 282–297.
Springer, 2005.

[Esp94] J. Esparza. On the decidability of model checking for several mu-calculi and petri
nets. In CAAP, volume 787 of LNCS, pages 115–129. Springer, 1994.

[Hab97] P. Habermehl. On the complexity of the linear-time µ-calculus for Petri nets. In
Proceedings of ICATPN’97, volume 1248 of LNCS, pages 102–116. Springer, 1997.

[KŘS04a] M. Křetı́nský, V. Řehák, and J. Strejček. Extended process rewrite systems: Expres-
siveness and reachability. In Proceedings of CONCUR’04, volume 3170 of LNCS,
pages 355–370. Springer, 2004.

[KŘS04b] M. Křetı́nský, V. Řehák, and J. Strejček. On extensions of process rewrite systems:
Rewrite systems with weak finite-state unit. In Proceedings of INFINITY’03, vol-
ume 98 of ENTCS, pages 75–88. Elsevier, 2004.

[KŘS05] M. Křetı́nský, V. Řehák, and J. Strejček. Reachability of Hennessy-Milner properties
for weakly extended PRS. In Proceedings of FSTTCS 2005, volume 3821 of LNCS,
pages 213–224. Springer, 2005.

[Lip76] R. Lipton. The reachability problem is exponential-space hard. Technical Report 62,
Department of Computer Science, Yale University, 1976.

[Mai00] M. Maidl. The common fragment of CTL and LTL. In Proc. 41th Annual Symposium
on Foundations of Computer Science, pages 643–652, 2000.

[May84] Ernst W. Mayr. An algorithm for the general Petri net reachability problem. SIAM
Journal on Computing, 13(3):441–460, 1984.

[May98] R. Mayr. Decidability and Complexity of Model Checking Problems for Infinite-State
Systems. PhD thesis, Technische Universität München, 1998.

[May00] R. Mayr. Process rewrite systems. Information and Computation, 156(1):264–286,
2000.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on the

Foundations of Computer Science, pages 46–57, 1977.
[Str04] J. Strejček. Linear Temporal Logic: Expressiveness and Model Checking. PhD thesis,

Faculty of Informatics, Masaryk University in Brno, 2004.

