Skip to main content

Approximation Algorithms for 2-Stage Stochastic Optimization Problems

  • Conference paper
FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4337))

  • 663 Accesses

Abstract

Stochastic optimization is a leading approach to model optimization problems in which there is uncertainty in the input data, whether from measurement noise or an inability to know the future. In this survey, we outline some recent progress in the design of polynomial-time algorithms with performance guarantees on the quality of the solutions found for an important class of stochastic programming problems — 2-stage problems with recourse. In particular, we show that for a number of concrete problems, algorithmic approaches that have been applied for their deterministic analogues are also effective in this more challenging domain. More specifically, this work highlights the role of tools from linear programming, rounding techniques, primal-dual algorithms, and the role of randomization more generally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beale, E.M.L.: On minimizing a convex function subject to linear inequalities. J. Royal Stat. Soc., Series B. 17, 173–184; discussion 194–203 (1955)

    MATH  MathSciNet  Google Scholar 

  2. Birge, J.R., Louveaux, F.V.: Introduction to Stochastic Programming. Springer, New York (1997)

    MATH  Google Scholar 

  3. Charikar, M., Chekuri, C., Pál, M.: Sampling bounds for stochastic optimization. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624, pp. 257–269. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Dantzig, G.B.: Linear programming under uncertainty. Management Sci. 1, 197–206 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dean, B., Goemans, M.X., Vondrak, J.: Approximating the stochastic knapsack problem: the benefit of adaptivity. In: Proc. 45th Annual IEEE Symposium on Foundations of Computer Science, pp. 208–217 (2004)

    Google Scholar 

  6. Dye, S., Stougie, L., Tomasgard, A.: The stochastic single resource service-provision problem. Naval Res. Logistics 50, 869–887 (2003); Also appeared as, The stochastic single node service provision problem. COSOR-Memorandum 99-13, Dept. Math. & Comp. Sc., Eindhoven Tech. Univ., Eindhoven (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dyer, M., Kannan, R., Stougie, L.: A simple randomised algorithm for convex optimisation. SPOR-Report 2002-05, Dept. Math. & Comp. Sc., Eindhoven Tech. Univ., Eindhoven (2002)

    Google Scholar 

  8. Dyer, M., Stougie, L.: Computational complexity of stochastic programming problems. SPOR-Report 2005-11, Dept. Math. & Comp. Sc., Eindhoven Tech. Univ., Eindhoven (2005)

    Google Scholar 

  9. Goemans, M.X., Williamson, D.P.: A general approximation technique for constrained forest problems. SIAM J. Comput. 24, 296–317 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gupta, A., Pál, M., Ravi, R., Sinha, A.: Boosted sampling: approximation algorithms for stochastic optimization. In: Proc. 36th ACM STOC, pp. 417–426 (2004)

    Google Scholar 

  11. Immorlica, N., Karger, D., Minkoff, M., Mirrokni, V.: On the costs and benefits of procrastination: approximation algorithms for stochastic combinatorial optimization problems. In: Proc. 15th SODA, pp. 684–693 (2004)

    Google Scholar 

  12. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48, 274–296 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kleinberg, J., Rabani, Y., Tardos, É.: Allocating bandwidth for bursty connections. SIAM J. Comput. 30, 191–217 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kleywegt, A.J., Shapiro, A., Homem-De-Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optimization 12, 479–502 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods for stochastic programming. Annals Oper. Res. (to appear)

    Google Scholar 

  16. Mahdian, M.: Facility Location and the Analysis of Algorithms through Factor-revealing Programs. Ph.D. thesis, MIT, Cambridge, MA (2004)

    Google Scholar 

  17. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric facility location problems. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, p. 229. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  18. Möhring, R., Schulz, A., Uetz, M.: Approximation in stochastic scheduling: the power of LP based priority policies. JACM 46, 924–942 (1999)

    Article  MATH  Google Scholar 

  19. Nemirovski, A., Shapiro, A.: On complexity of Shmoys–Swamy class of two-stage linear stochastic programming problems (2006) Optimization Online, http://www.optimization-online.org/DB_FILE/2006/07/1434.pdf

  20. Nesterov, Y., Vial, J.-P.: Confidence level solutions for stochastic programming. CORE Discussion Papers (2000), http://www.core.ucl.ac.be/services/psfiles/dp00/dp2000-13.pdf

  21. Ravi, R., Sinha, A.: Hedging uncertainty: Approximation algorithms for stochastic optimization problems. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 101–115. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Ruszczynski, A., Shapiro, A. (eds.): Stochastic Programming. Handbooks in Oper. Res. & Mgmt. Sc., vol. 10. North-Holland, Amsterdam (2003)

    MATH  Google Scholar 

  23. Shapiro, A.: Monte Carlo sampling methods. In: Ruszczynski, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Oper. Res. & Mgmt. Sc., vol. 10, North-Holland, Amsterdam (2003)

    Chapter  Google Scholar 

  24. Shapiro, A., Nemirovski, A.: On complexity of stochastic programming problems (2004), Optimization Online, http://www.optimization-online.org/DB_FILE/2004/10/978.pdf

  25. Shmoys, D.B., Swamy, C.: An approximation scheme for stochastic linear programming and its application to stochastic integer programs. J. ACM (to appear); Preliminary version appeared as Stochastic optimization is (almost) as easy as deterministic optimization. In: Proc. 45th Annual IEEE FOCS, pp. 228–237 (2004)

    Google Scholar 

  26. Swamy, C.: Approximation Algorithms for Clustering Problems. Ph.D. thesis, Cornell Univ., Ithaca, NY (May 2004), http://www.math.uwaterloo.ca/cswamy/theses/master.pdf

  27. Swamy, C., Shmoys, D.B.: The sample average approximation method for 2-stage stochastic optimization (November 2004), http://www.math.uwaterloo.ca/cswamy/papers/SAAproof.pdf

  28. Verweij, B., Ahmed, S., Kleywegt, A.J., Nemhauser, G.L., Shapiro, A.: The sample average approximation method applied to stochastic routing problems: a computational study. Comp. Opt. Appl. 24, 289–333 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Swamy, C., Shmoys, D.B. (2006). Approximation Algorithms for 2-Stage Stochastic Optimization Problems. In: Arun-Kumar, S., Garg, N. (eds) FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2006. Lecture Notes in Computer Science, vol 4337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11944836_3

Download citation

  • DOI: https://doi.org/10.1007/11944836_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49994-7

  • Online ISBN: 978-3-540-49995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics