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Abstract. Stochastic optimization is a leading approach to model op-
timization problems in which there is uncertainty in the input data,
whether from measurement noise or an inability to know the future. In
this survey, we outline some recent progress in the design of polynomial-
time algorithms with performance guarantees on the quality of the solu-
tions found for an important class of stochastic programming problems
— 2-stage problems with recourse. In particular, we show that for a num-
ber of concrete problems, algorithmic approaches that have been applied
for their deterministic analogues are also effective in this more challeng-
ing domain. More specifically, this work highlights the role of tools from
linear programming, rounding techniques, primal-dual algorithms, and
the role of randomization more generally.

1 Introduction

Uncertainty is a facet of many decision environments and might arise due to vari-
ous reasons, such as unpredictable information revealed in the future, or inherent
fluctuations caused by noise. Stochastic optimization provides a means to handle
uncertainty by modeling it by a probability distribution over possible realizations
of the actual data called scenarios. The field of stochastic optimization or stochas-
tic programming, has its roots in the work of Dantzig [4] and Beale [1] in the 1950s,
and has increasingly found application in a wide variety of areas, including trans-
portation models, logistics, financial instruments, and network design.

An important and widely used model in stochastic programming is the 2-stage
recourse model: first, given only distributional information about (some of) the
data, one commits on initial (first-stage) actions. Then, once the actual data
is realized according to the distribution, further recourse actions can be taken
(in the second stage) to augment the earlier solution and satisfy the revealed
requirements. The aim is to choose the initial actions so as to minimize the
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expected total cost incurred. Typically the recourse actions entail making deci-
sions in rapid reaction to the observed scenario, and are therefore more costly
than decisions made ahead of time. Thus there is a trade-off between commit-
ting initially having only imprecise information while incurring a lower cost, and
deferring decisions to the second–stage when we know the input precisely but
the costs are higher. Many applications come under this setting, and much of
the textbook of Birge and Louveaux [2] is devoted to models and algorithms for
this class of problems.

A commonly cited example involves a setting where a company has to decide
where to set up facilities to serve client demands. Typically the demand pattern
is not known precisely at the outset, but one might be able to obtain, through
simulation models or surveys, statistical information about the demands. This
motivates the following 2-step decision process: in the first-stage, given only
distributional information about the demands (and deterministic data for the
facility opening costs), one must decide which facilities to open initially. Once
the actual input (the client demands) is realized according to this distribution,
we can extend the solution by opening more facilities, incurring a recourse cost,
and we have to assign the realized demands to open facilities. This is the 2-stage
stochastic uncapacitated facility location problem. The recourse costs are usually
higher than the original ones (because opening a facility later would involve
deploying resources with a small lead time), could be different for the different
facilities, and could even depend on the realized scenario.

The formal model. The 2-stage recourse model can be formalized as follows:
we are given a probability distribution over possible realizations of the data called
scenarios and we construct a solution in two stages. First, we may take some deci-
sions to construct an anticipatory part of the solution, x, incurring a cost of c(x).
Then a scenario A is realized according to the distribution, and in the second-stage
we may augment the initial decisions by taking recourse actions yA, (if necessary)
incurring a certain cost fA(x, yA). The goal is to choose the initial decisions so as
to minimize the expected total cost, c(x)+EA

[
fA(x, yA)

]
, where the expectation

is taken over all scenarios according to the given probability distribution.

An important issue that we have left unspecified above is the question of how
the scenario-distribution is represented. One simple approach is to assume that
we are given as part of the input description a list that explicitly enumerates each
scenario (occurring with non-zero probability) and its probability of occurrence.
However, this causes a significant blow-up in the input size, since the distribution
can easily have support size that is exponential in the other input parameters,
that is, the non-stochastic portion of the input; for example, in stochastic facility
location, consider the case where the demand of each client is set independently.
Thus, to ensure that a “polynomial-time” algorithm in this model has running
time polynomial in the other input parameters, one must restrict oneself to
distributions with a polynomial-size support, which is a severe restriction; we
shall call this the polynomial-scenario model to reflect this fact. The distribution
mentioned above is captured by the independent-activation model introduced by
Immorlica et al. [11], where the scenario-distribution is a product of independent
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distributions (described in the input). Typically, there is an underlying set of el-
ements (clients) and a scenario is generated by independent choices (setting the
demands) made for each element. Independent distributions allow one to suc-
cinctly specify a class of distributions with exponentially many scenarios, and
have been used in the Computer Science community to model uncertainty in
various settings [13,18,5]. However, many of the underlying stochastic applica-
tions often involve correlated data (e.g., in stochastic facility location the client
demands are expected to be correlated due to economic and/or geographic fac-
tors), which the independent-activation model clearly does not capture. A more
general way of specifying the distribution is the black-box model, where the dis-
tribution is specified only via a procedure (a “black box”) that one can use to
independently sample scenarios from the distribution. In this model, each pro-
cedure call is treated as an elementary operation, and the running time of an
algorithm is measured in terms of the number of procedure calls. The black-
box model incorporates the desirable aspects of both the previous models: it
allows one to specify distributions with exponentially many scenarios and corre-
lation in a compact way that makes it reasonable to talk about polynomial-time
algorithms.

Stochastic optimization problems are often computationally quite difficult,
and often more difficult than their deterministic counterparts, both from the
viewpoint of complexity theory, as well as from a practical perspective. In many
settings the computational difficulty stems from the fact that the distribution
might assign a non-zero probability to an exponential number of scenarios, lead-
ing to considerable increase in the problem complexity, a phenomenon often
called the “curse of dimensionality.” Thus, many stochastic problems that are
easy to solve in the polynomial-scenario model due to the expansive input en-
coding become NP-hard in the black-box model. For example, stochastic linear
programming problems (i.e., stochastic problems that can be formulated as lin-
ear programs) are polynomial-time solvable in the polynomial-scenario model
but become #P -hard in the black-box model [8]. In other settings, even with
polynomially many scenarios, the stochastic problem gives rise to a more com-
plex problem than its deterministic counterpart and is NP-hard, whereas the
deterministic problem is solvable in polynomial time.

In this survey, we focus on the design of approximation algorithms for stochas-
tic optimization problems. Throughout, we use a ρ-approximation algorithm to
denote a polynomial-time algorithm that always returns a feasible solution with
objective function value within a factor ρ of the optimum; ρ is called the ap-
proximation ratio or performance guarantee of the algorithm.

There is an abundance of literature in the stochastic programming commu-
nity that deals with computational aspects of solving 2-stage stochastic pro-
grams, especially 2-stage linear programs (LPs), which we shall not cover here;
the reader is referred to [2,22] for more information. Many of these methods are
only suitable in the polynomial-scenario model and cannot handle the burden of
an exponential number of scenarios. One appealing approach in the black-box
model is to sample a certain number of times from the scenario-distribution,
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estimate the probability of a scenario by its frequency in the sampled set, and
solve the 2-stage problem determined by this approximate distribution. This is
known as the sample average approximation (SAA) method. The SAA method
is a widely used heuristic in practice and has been empirically shown to work
well in various settings (see, e.g., [15,28]). The main question here is: how many
samples does one need to ensure that an optimal solution to the sample-average
problem is a near-optimal solution to the original problem (with high probabil-
ity)? While there are results that prove asymptotic convergence to the optimal
solution (to the original problem) in the limit as the number of samples goes to
infinity, fewer results are known about the rate of convergence, or equivalently,
about worst-case bounds on the sample size required to obtain a near-optimal
solution. Ideally one would like to show that a polynomial number of samples
always suffice. Such a result would show that the SAA method gives a reduction
from the black-box problem to a polynomial-scenario problem, thereby reducing
the complexity of the stochastic problem, while losing a factor in the approxi-
mation guarantee. In particular, this would immediately give an approximation
algorithm for stochastic linear programming problems in the black-box model.
The work that most closely considers the aspect of worst-case bounds is a pa-
per of Kleywegt, Shapiro and Homem-De-Mello [14] (see also [23]). Kleywegt et
al. prove a sample-size bound for 2-stage programs that is independent of the
number of scenarios, but depends on the variance of a certain quantity (calcu-
lated using the scenario-distribution) which need not be polynomially bounded,
even for very structured programs. We shall return to this question of proving
polynomial sample-size bounds for the SAA method in Section 4.

There are other sampling-based approaches where instead of sampling just
once initially, the algorithm used to solve the stochastic problem contains a
sampling subroutine that is called whenever one needs to estimate some quantity,
such as the function value or the gradient. Dyer, Kannan and Stougie [7] use
such an approach for a stochastic maximization LP, where samples are used to
estimate the objective function value at a given point. This yields a sample size
that is only polynomial in the maximum value attained by any scenario (due to
the high variance in the values of the different scenarios). Nesterov and Vial [20]
employ stochastic subgradients, estimated via sampling, in a subgradient-descent
algorithm, and require a sample size that is polynomial in the maximum variation
in the objective function value in the feasible region.

The design and analysis of algorithms with provable worst-case guarantees for
2-stage stochastic integer programs is a relatively recent research direction. The
first such result appears to be due to Dye, Stougie and Tomasgard [6] who give a
constant-factor approximation algorithm for a resource provisioning problem in
the polynomial-scenario model. Subsequently, a series of papers [21,11,10,25] ap-
peared on this topic in the Computer Science literature, and showed that one can
obtain guarantees for a variety of stochastic combinatorial optimization problems
by adapting the techniques developed for the deterministic analogue. Gupta,
Pál, Ravi and Sinha [10], who were the first to consider the black-box model
(under a certain cost assumption), make such a connection explicit. Shmoys and
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Swamy [25], who give algorithms in the black-box model with arbitrary costs,
show an even more explicit correspondence. They showed that one could derive
approximation algorithms for most of the problems considered in [21,11,10] by
adopting a natural LP rounding approach that, in effect, converted an LP-based
approximation guarantee for the deterministic analogue into a guarantee for the
stochastic generalization with a small loss in the approximation factor. Thus,
if we can solve the stochastic LP (even approximately), which is a #P -hard
problem, then we will have essentially reduced the stochastic problem to its
deterministic analogue.

This survey is organized as follows: in Section 2 we describe an approxima-
tion scheme for solving a large class of 2-stage stochastic LPs. In Section 3 we
describe some techniques for devising approximation algorithms for stochastic
integer programming problems. We focus mainly on the black-box model, but
also sometimes consider the polynomial-scenario model; in Section 4 we consider
the SAA method and establish a concrete connection between these two models.

2 Stochastic Linear Programs

We now describe the fully polynomial approximation scheme (FPAS) of Shmoys
and Swamy [25] that can be applied to a rich class of 2-stage stochastic LPs. The
algorithm returns a solution of value within (1 + κ) times the optimum (with
high probability), for any κ > 0, in time polynomial in the input size, 1

κ , and
a parameter λ, which is the maximum ratio between the second- and first-stage
costs. As we show in Section 3, this provides us with a powerful and versatile
tool for designing approximation algorithms for stochastic integer optimization
problems in much the same way that linear programming has proved to be
immensely useful in the design of approximation algorithms for deterministic
optimization problems.

We shall consider a stochastic generalization of the set cover problem as an
illustrative problem to explain the main ideas. In the 2-stage stochastic set cover
(SSC) problem, we are given a ground set U of n elements, a collection of subsets
of U , S1, . . . , Sm, and a distribution over subsets of U that specifies the target
set of elements to cover. In stage I, we can pick some sets paying a cost of
wI

S for each set S. Then, a scenario materializes which specifies a target set
A ⊆ U of elements to be covered and the costs {wA

S } of picking sets in that
scenario, and one can pick additional sets to ensure that A is contained in the
union of the sets selected in the two stages. The aim is to minimize the expected
cost of the sets picked. Denoting the probability of scenario A by pA (which
we do not know explicitly, and could be 0), we can formulate the problem as
an integer program and relax the integrality constraints to obtain the following
linear program: minimize
{∑

S

wI
SxS +

∑

A⊆U,S

pAwA
S rA,S :

∑

S:e∈S

(xS + rA,S)≥1 ∀A, e∈A; xS , rA,S ≥0 ∀A, S.
}

(SSC-P1)
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Variable xS indicates whether set S is chosen in stage I, and rA,S indicates if
set S is chosen in scenario A. The constraint says that in every scenario A, every
element in that scenario has to be covered by a set chosen either in stage I or in
stage II. Notice that (SSC-P1) is an LP with an exponential number of variables
and constraints, and it seems difficult to efficiently compute an (near-) optimal
solution to (SSC-P1), since even writing out a solution can take exponential
space (and time). However, if we fix the first-stage decisions, i.e., the xS variables,
then the scenarios become separable, so we can reformulate (SSC-P1) as follows:
minimize

h(x) :=
∑

S

wI
SxS +

∑

A⊆U

pAfA(x) subject to 0 ≤ xS ≤ 1 ∀S, (SSC-P2)

where (1)

fA(x) := min
{∑

S

wA
S rA,S :

∑

S:e∈S

rA,S ≥ 1 −
∑

S:e∈S

xS ∀e ∈ A; rA,S ≥ 0 ∀S.
}

Here the second-stage decisions only appear in the minimization problem fA(x),
which denotes the recourse problem that one needs to solve for scenario A. It
is easy to show that (SSC-P2) is equivalent to (SSC-P1), and that its objective
function is convex. Although we now have a compact convex program, the com-
plexity of the problem resurfaces as follows: in general, it is #P -hard to even
evaluate the objective function h(.) at a given point [8]. Nevertheless, we can
leverage convexity and adapt the ellipsoid method to solve (SSC-P2).

In the ellipsoid method, we start by containing the feasible region within
a ball and then generate a sequence of ellipsoids, each of successively smaller
volume. In each iteration, one examines the center of the current ellipsoid and
obtains a specific half-space defined by a hyperplane passing through the cur-
rent ellipsoid center. If the current ellipsoid center is infeasible, then one uses a
violated inequality as the hyperplane, otherwise, one uses an objective function
cut to eliminate (some or all) feasible points whose objective function value is no
better than the current center, and thus make progress. A new ellipsoid is then
generated by finding the minimum-volume ellipsoid containing the half-ellipsoid
obtained by the intersection of the current one with this half-space. Continuing
in this way, using the fact that the volume of the successive ellipsoids decreases
by a significant factor, one can show that after a polynomial number of itera-
tions, the feasible point generated with the best objective function value is a
near-optimal solution.

Let P = P0 denote the polytope
{
x ∈ R

m : 0 ≤ xS ≤ 1 for all S
}
, and xi

be the current iterate. Define λ = max(1, maxA,S wA
S /wI

S), which we assume is
known. It is trivial to determine if xi is feasible, so we only need to describe how
to obtain an objective function cut. One option is to simply add the constraint
h(x) ≤ h(xi), which is not a “linear” cut, but would preserve the convexity
of the feasible region. But then in subsequent iterations, without the ability
to evaluate (or even estimate) h(.) at a given point, we would not even be
able to decide if the current point is feasible (or even almost-feasible), which
poses a formidable difficulty. Alternatively, one could use cuts generated by a
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subgradient, which is the analogue of gradient for a non-differentiable function:
d ∈ R

m is a subgradient of a function g : R
m �→ R at point u, if g(v) − g(u) ≥

d · (v − u) for every v ∈ R
m. If di is a subgradient at point xi, one can add the

subgradient cut di · (x− xi) ≤ 0 and proceed with the (smaller) polytope Pi+1 =
{x ∈ Pi : di · (x − xi) ≤ 0}. Unfortunately, even computing a subgradient is
hard to do in polynomial time for the objective functions that arise in stochastic
programs. We circumvent this obstacle by using an approximate subgradient:

Definition 1. We say that d̂ ∈ R
m is an (ω, D)-subgradient of a function g :

R
m �→ R at point u ∈ D, if for every v ∈ D, we have g(v) − g(u) ≥ d̂ · (v − u) −

ωg(u).

We abbreviate (ω, P)-subgradient to ω-subgradient. An extremely useful prop-
erty of ω-subgradients is that one can compute them efficiently by sampling. If
d̂i is an ω-subgradient at xi, one can add the inequality d̂i · (x − xi) ≤ 0 and
obtain the polytope Pi+1 = {x ∈ Pi : d̂i · (x − xi) ≤ 0}. Since we use an ap-
proximate subgradient, this might discard points with h(.) value less than h(xi).
But for any point y ∈ Pi \ Pi+1, we have that h(y) ≥ (1 − ω)h(xi), so no such
point has h(.) value much smaller than h(xi). Continuing this way, we obtain a
polynomial number of points x0, x1, . . . , xk such that xi ∈ Pi ⊆ Pi−1 for each
i, and the volume of the ellipsoid centered at xk containing Pk, and hence that
of Pk is small. Now if h(.) has a bounded Lipschitz constant (h has Lipschitz
constant at most K if |h(v) − h(u)| ≤ ‖v − u‖2 ∀u, v ∈ R

m) then one can show
that mini h(xi) is close to the optimal value OPT with high probability. The
entire procedure is summarized below.

FindOpt(γ, ε) [Returns x̄ ∈ P such that h(x̄) ≤ OPT/(1 − γ) + ε. Assume γ ≤ 1
2 . K

is the Lipschitz constant.]

O1. Set k ← 0, y0 ← 0, N ← �2m2 ln
( 16KR2

V ε

)
�, n ← N log

( 8NKR
ε

)
, and ω ← γ/2n.

Let E0 ← B(0, R) and P0 ← P .
O2. For i = 0, . . . , N do the following.

a) If yi ∈ Pk, set xk ← yi. Let d̂k be an ω-subgradient of h(.) at xk. Let H denote
the half space {x ∈ R

m : d̂k · (x−xk) ≤ 0}. Set Pk+1 ← Pk ∩H and k ← k+1.
b) If yi /∈ Pk, let a · x ≤ b be a violated inequality, that is, a · yi > b, whereas

a · x ≤ b for all x ∈ Pk. Let H be the half space {x ∈ R
m : a · (x − yi) ≤ 0}.

c) Set Ei+1 to be the ellipsoid of minimum volume containing the half-ellipsoid
Ei ∩ H .

O3. Set k ← k − 1. Return the point in {x0, . . . , xk} with minimum h(.) value.

There are a few details needed to complete the algorithm description. First,
since we cannot compute h(x) we will not be able to compute the point arg mini

h(xi) in step O3. Instead, by using ω-subgradients we will find a point x̄ in the
convex hull of x0, . . . , xk, such that h(x̄) is close to mini h(xi). We repeatedly
perform a bisection search on the line segment joining x̄ (initialized to x0) and
xi for i = 1, . . . , k, using an ω-subgradient to infer which direction to move
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along the segment. Each time the search returns a point y such that h(y) is close
to min(h(x̄), h(xi)), and we update x̄ to y. Second, to convert the performance
guarantee of procedure FindOpt into a purely multiplicative (1+κ)-guarantee, we
need to obtain a lower bound on OPT (and set ε, γ accordingly). Under the mild
assumption that the cost of every set S, in stage I and in every stage II scenario,
is at least 1, one can do this by sampling initially O(λ) times. Essentially, one
can detect by sampling O(λ) times, whether the probability that some scenario
A 
= ∅ occurs is at least 1

λ ; if so, then OPT ≥ 1
λ , otherwise x = 0 is an optimal

solution. Finally, we specify how to compute an ω-subgradient at a point x ∈ P
efficiently. Let z∗A be an optimal solution to the dual of fA(x).

Lemma 1. (i) the vector d with components dS =
∑

A pA(wI
S −

∑
e∈A∩S z∗A,e) is

a subgradient of h(.) at x; (ii) for every scenario A and set S, |wI
S−

∑
e∈A∩S z∗A,e|

≤ λwI
S ; and (iii) if d̂ ∈ R

m is such that dS − ωwI
S ≤ d̂S ≤ dS for every S, then

d̂ is an ω-subgradient of h(.) at x.

Parts (i) and (ii) of Lemma 1 show that each component of the subgradient vector
is the expectation of a random variable (according to the scenario-distribution)
with bounded variance. (Part (ii) also yields a bound on the Lipschitz con-
stant of h.) So, with probability at least 1 − δ, one can estimate this expecta-
tion to within an additive error of ωwI

S simultaneously for each S, using sam-
ple size poly

(
input size, λ

ω , ln(1
δ )

)
. This yields an ω-subgradient, by part (iii) of

Lemma 1. We compute an ω-subgradient at a polynomial number of points,
with a polynomially small ω, so overall we get a sample size that is polynomial
in the input size, λ, and 1

κ . This sample-size bound is tight up to polynomial
factors in the black-box model: one can construct examples where Ω(λ/ρ) sam-
ples are needed in the black-box model to obtain a performance guarantee of
ρ [25], and the dependence on κ is also unavoidable due to the #P -hardness
result.

Shmoys and Swamy showed that the arguments above, especially Lemma 1,
can be generalized to yield an approximation scheme for a broad class of 2-stage
stochastic LPs which includes the fractional versions of a variety of stochas-
tic combinatorial optimization problems such as (stochastic) covering problems
(e.g., set cover, network design, multicut), facility location problems, multicom-
modity flow.

3 Stochastic Integer Programs

We now consider some stochastic combinatorial optimization problems, modeled
as stochastic integer programs, and describe some methods that can be used to
design approximation algorithms for these problems.

A general rounding technique. We first describe a simple, but powerful rounding
framework due to [25], using stochastic set cover (SSC) as an illustrative exam-
ple. Recall the relaxation (SSC-P2) for SSC. We will show that an LP-based
approximation guarantee for the deterministic set cover (DSC) problem yields a



Approximation Algorithms for 2-Stage Stochastic Optimization Problems 13

corresponding guarantee for the stochastic problem. Given a DSC instance with
a universe U of n elements, a family of subsets S1, . . . , Sm with set S having
weight wS , consider the following LP relaxation of the integer problem of pick-
ing a minimum weight collection of sets to cover U .

OPTDet := min
∑

S∈S
wSxS subject to

∑

S∈S:e∈S

xS ≥ 1 ∀e; xS ≥ 0 ∀S.

(SC-P)

Theorem 2. Given an algorithm that for every DSC instance produces a solu-
tion of cost at most ρ · OPTDet , one can convert any solution x to (SSC-P2) to
an integer solution of cost at most 2ρ · h(x).

Proof. Let r∗A be an optimal solution to the recourse problem fA(x), so fA(x) =∑
S wA

S r∗A,S . Observe the following simple fact: an element e is covered to an
extent of at least 1

2 either by the variables xS , or by the variables r∗A,S in every
scenario A containing e. Let E = {e :

∑
S:e∈S xS ≥ 1

2}. Then (2x) is a fractional
set cover solution for the instance with universe E, so one can obtain an integer
set cover x̃ for E of cost at most 2ρ ·

∑
S wI

SxS . These are our stage I sets.
Similarly, for any scenario A, (2r∗A) is a fractional set cover for A \ E, since for
each such element e we have

∑
S:e∈S r∗A,S ≥ 1

2 . Therefore, one can cover these
elements at a cost of at most 2ρ ·

∑
S wA

S r∗A,S . So the cost of the solution x̃ is at
most 2ρ · h(x). �


Combined with the FPAS of Section 2, this yields approximation guarantees for
various stochastic covering problems, e.g., we obtain guarantees of 2 logn+ ε for
SSC, and 4 + ε for stochastic vertex cover.

Stochastic facility location. In the deterministic uncapacitated facility location
(UFL) problem, given a set of candidate facilities F and a set of clients D, we
have to select a subset of facilities to open and assign each client to an open
facility. Each facility i has an opening cost of fi and each client j has demand
dj , and the cost of assigning client j to facility i is given by djcij , where cij is
the distance between i and j and these distances form a metric. The goal is to
minimize the sum of the facility opening and client assignment costs. In the 2-
stage stochastic version of the problem, abbreviated SUFL, the demand of a client
is a random variable (the demands may be correlated), and we can open facilities
either in stage I, or after the scenario A with demands dA

j is revealed, paying
a cost of f I

i or fA
i respectively for opening facility i. We first consider SUFL in

the polynomial-scenario model and show that one can design an approximation
algorithm by dovetailing an approach used for UFL. Then we show that the
above rounding technique can be adapted to derive an approximation algorithm
for SUFL in the black-box model. For simplicity, we will assume that dA

j ∈ {0, 1}
for every j, A, so a scenario now specifies a set of clients that need to be assigned
to facilities.

Let A denote the collection of all scenarios, which is explicitly described in the
input in the polynomial-scenario model. Consider the following LP relaxation for
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SUFL. We use i to index the facilities, j to index the clients, and A to index the
scenarios. Variables yi and yA,i indicate whether facility i is opened in stage I
or in scenario A respectively, and xA,ij indicates if client j is assigned to facility
i in scenario A.

min
X

i

f I
i yi+

X
A

pA

“P
i

fA
i yA,i +

P
j∈A,i

cijxA,ij

”

(P)

s.t.
X

i

xA,ij ≥ 1 ∀A, j ∈ A

xA,ij ≤ yi + yA,i ∀i, A, j ∈ A

yi, xA,ij , yA,i ≥ 0 ∀i, A, j ∈ A.

max
X

A,j∈A

pAαA,j (D)

s.t. αA,j ≤ cij+βA,ij ∀i, A, j ∈ A
(2)

X
j∈A

βA,ij ≤ fA
i ∀A, i (3)

X
A,j∈A

pAβA,ij ≤ f I
i ∀i (4)

αA,j , βA,ij ≥ 0 ∀i, A, j ∈ A.

(D) is the dual program. We briefly sketch a primal-dual 3-approximation
algorithm due to Mahdian [16], which closely resembles the Jain-Vazirani (JV)
algorithm for UFL [12]. All dual variables are initially set to 0. It is easy to
imagine the dual-ascent process: we uniformly increase all αA,j variables at rate
1 until one of the constraints becomes tight. If constraint (2) goes tight for some
(j, A) and facility i, we also start increasing βA,ij at rate 1. If constraint (3) goes
tight for some A, i, then we tentatively open facility i for scenario A and freeze
(i.e., stop increasing) all αA,j , βA,ij variables for which αA,j ≥ cij . If (4) goes
tight for a facility i, we tentatively open i for stage I, and for every scenario
A, we freeze the αA,j, βA,ij variables for which αA,ij ≥ cij . The process ends
when all αA,j variables are frozen. Now we perform a clean-up step for stage I,
and for each scenario, to decide which facilities to open. For stage I, we open a
maximal subset F of the tentatively open stage I facilities, such that for every
(j, A), there is at most one facility i ∈ F with βA,ij > 0. In every scenario A, we
open a maximal subset FA of the tentatively open facilities for scenario A, such
that for every j ∈ A, there is at most one facility i ∈ F ∪ FA with βA,ij > 0.
The analysis proceeds as in the JV algorithm, by showing that for every (j, A),
if the facility that caused αA,j to freeze is not open, then there must be a facility
opened in stage I or in scenario A that is at most 3αA,j distance away from j.
This proves an approximation ratio of 3.

We now consider SUFL in the black-box model. We compactify (P) to ob-
tain the convex program: minimize h(y) :=

∑
i f I

i yi +
∑

A∈A pAgA(y), where
gA(y) is the minimum of

∑
i fA

i yA,i +
∑

j∈A,i cijxA,ij subject to the constraints∑
i xA,ij ≥ 1 for all j ∈ A, xA,ij ≤ yi, yA,i for all i, j ∈ A, and xA,ij , yA,i ≥ 0

for all i, j ∈ A. Note that this is not a stochastic covering program. While UFL
admits a star-covering relaxation (clients have to be covered by stars, a star is
a facility and a set of clients assigned to it), the corresponding stochastic cov-
ering program does not model SUFL, because in SUFL when we open a facility
in stage I we do not fix then the set of clients it will serve; this is decided in
stage II, and will typically be scenario-dependent. Yet, the above rounding tech-
nique can be adapted here, by applying decoupling to the covering constraint
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∑
i xA,ij ≥ 1. Let ρUFL denote the integrality gap of UFL, which is at most

1.52 [17].

Theorem 3. The integrality gap of (P) is at most 2ρUFL.

Proof. Let y be any feasible solution to the convex program and let (x∗
A, y∗

A) be
an optimal solution to gA(y). We write x∗

A,ij = xI
A,ij + xII

A,ij for each scenario
A and client j ∈ A, where xI

A,ij ≤ y∗
i and xII

A,ij ≤ y∗
A,i. This is always possible

since x∗
A,ij ≤ y∗

i + y∗
A,i. So either

∑
i xI

A,ij ≥ 1
2 or xII

A,ij ≥ 1
2 . For a client j,

define Sj = {A � j :
∑

i xI
A,ij ≥ 1

2}. For the stage I decisions, we construct
a feasible fractional solution for a UFL instance where the facility costs are f I

i ,
the assignment costs are cij , and the “demand” of client j is set to

∑
A∈Sj

pA,
and then round this using an algorithm for UFL. If we treat each (j, A) where
A ∈ Sj as a separate client with demand pA, we obtain a feasible solution by
setting ŷi = min(1, 2y∗

i ) and x̂A,ij = min(1, 2xI
A,ij). yields a feasible solution for

this instance. But since the ŷi facility variables do not depend on the scenario,
we can re-optimize the assignment for each (j, A) to obtain an assignment that
does not depend on A. Thus, we can coalesce all the (j, A) clients into one,
with demand

∑
A∈Sj

pA. 2(
∑

i f I
i y

∗
i +

∑
j,i,A∈Sj

pAcijx
I
A,ij). Since the integrality

gap is ρUFL, there is an integer solution (x̃, ỹ) of cost at most 2ρUFL(
∑

i f I
i y

∗
i +∑

j,i,A∈Sj
pAcijx

I
A,ij); this determines which facilities to open in stage I. In any

scenario A, each client j such that A ∈ Sj is assigned to the stage I facility
given by the assignment x̃. For each remaining client j, since

∑
i xII

A,ij ≥ 1
2 , the

solution ŷA,i = min
(
1, 2y∗

A,i

)
, x̂A,ij = min

(
1, 2xII

A,ij

)
yields a feasible solution

for the UFL instance with client set {j ∈ A : A /∈ Sj}. Again the ρUFL integrality
gap shows that there is an integer solution with “low” cost. Overall, we get that
the total cost of the solution ỹ is at most 2ρUFL · h(y). This shows that the
integrality gap is at most 2ρUFL (and gives a 3.04-approximation algorithm in
the polynomial-scenario model (taking ρUFL = 1.52).) �


The rounding approach does not yet yield the strongest performance guarantee
currently known. We will return to this problem in Section 4.

Stochastic Steiner tree. We now describe the boosted sampling technique of
Gupta et al. [10] that shows that for certain stochastic problems, an approxi-
mation algorithm for the deterministic problem that satisfies some cost-sharing
properties, can be used to derive performance guarantees for the stochastic prob-
lem. We focus on the stochastic rooted Steiner tree (SST) problem: we have a
graph G = (V, E), a fixed root r ∈ V , and a distribution that specifies a random
set of terminals to connect to the root. We can buy edges either in stage I or
after the terminal set A ⊆ V has been revealed, paying a cost of ce or cA

e respec-
tively for edge e, so as to connect all the nodes in A to r. It is worth noting that
we can formulate a fractional version of SST as a stochastic covering problem,
where each cut separating a terminal from the root must be covered by edges
bought in the two stages. One can therefore obtain a (1 + ε)-optimal fractional
solution in polynomial time. However the rounding procedure detailed above
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does not work, because the cut-covering problems obtained after decoupling the
two stages need not correspond to Steiner tree instances (and may not even fall
into the Goemans-Williamson framework [9]). We can use boosted sampling to
devise a 4-approximation algorithm, under the cost restriction cA

e = λAce for ev-
ery edge e in every scenario A. This reflects a limitation of the boosted sampling
approach. In the case of SST, without such a restriction the problem becomes
Group-Steiner-tree-hard [21], but for other problems such as stochastic {vertex
cover, facility location}, one can obtain good guarantees without imposing any
cost restrictions by using other techniques.

Here we assume for simplicity that cA
e = λce for every A, e. Let ST(S) denote

the cost of an optimal Steiner tree on S ∪ {r} wrt. costs {ce}. We say that an
algorithm A for the Steiner tree problem admits a β-strict cost sharing if there
is a function ξ : 2V × V �→ R≥0 such that for every S, T ⊆ V with S ∩ T = ∅, (i)
ξ(S, u) = 0 for u /∈ S; (ii)

∑
u∈S ξ(S, u) ≤ ST(S); and (iii) there is a procedure

AugA that augments the tree A(S) constructed by A on input S to a tree on
S∪T ∪{r} incurring cost c

(
AugA(S, T )

)
≤ β

∑
u∈T ξ(S∪T, u). Intuitively ξ(S, u)

stands for u’s share in the cost of a Steiner tree on S.
We may assume that G is complete and the edge costs form a metric. We

use the MST heuristic as algorithm A. This is a 2-approximation algorithm that
admits a 2-strict cost sharing. Procedure AugA consists of contracting S into the
root, and building an MST on T ∪{r} in the contracted graph. Rooting the MST
on S∪{r} at r, we set ξ(S, u) = 1

2 (cost of the edge joining u to its parent). This
satisfies properties (i) and (ii) above, and it is not hard to show that it satisfies
(iii) with β = 2. The algorithm for SST is quite simple and extremely elegant:
we draw λ samples A1, . . . , Aλ from the distribution and build the tree A(S)
where S =

⋃
i Ai, as our first-stage solution. Intuitively, this tries to account for

the λ inflation factor by sampling each scenario A, in expectation, λpA times.
In the second-stage, if scenario A is realized, we use AugA to augment A(S) and
connect A \S to the root. A nice feature of the algorithm is that only λ samples
are required.

Let E∗
1 and E∗

A be the edges purchased in stage I and in scenario A by an
optimal (integer) solution to SST, and let OPT = c(E∗

1 ) + λEA

[
c(E∗

A)
]

be the
cost incurred. Let ξ(X, Y ) denote

∑
u∈Y ξ(X, u). The first-stage cost can be

bounded by noting that ST(S) is at most the cost of ZS = E∗
1 ∪

(⋃λ
i=1 E∗

Ai

)

since ZS connects S to r. The expected first-stage cost is at most 2ES

[
ST(S)

]
≤

2ES

[
c(ZS)

]
which is at most 2·OPT , since each scenario A is sampled λpA times

in expectation. The expected second-stage cost is given by λES,A

[
c(AugA(S, A \

S))
]

which is at most 2λES,A

[
ξ(S ∪ A, A \ S)

]
by property (iii). We can treat

scenario A as an extra sample Aλ+1, and since the Ai’s are identically distributed,
we have that ES,A

[
ξ(S∪A, A\S)

]
≤ 1

λ+1ES,A

[
ξ(S∪A, S∪A)

]
≤ 1

λ+1ES,A

[
ST(S∪

A)
]
. Finally, by arguing as we did for stage I, one can bound ES,A

[
ST(S ∪ A)

]

by λ+1
λ · OPT . Thus the expected second-stage cost is at most 2 · OPT , and the

total cost is at most 4 · OPT .
Gupta et al. showed that boosted sampling can be applied to any stochastic

problem satisfying a certain sub-additivity condition, if we have an approximation
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algorithm for the deterministic version that admits a β-strict cost-sharing (which
is now defined more abstractly). They show that an α-approximation algorithm
with a β-strict cost sharing gives an (α + β)-approximation algorithm for the
stochastic problem. In all known cases, such an approximation algorithm is ob-
tained via the primal-dual schema and the cost shares are derived from the dual
variables. Thus, boosted sampling can be viewed as a primal-dual approach for
designing approximation algorithms for stochastic problems.

4 The Sample Average Approximation Method

The sample average approximation (SAA) method is a natural approach for com-
puting solutions in the black-box model. Here we replace the original stochastic
problem by a sample-average problem obtained by sampling scenarios some N
times and estimating the scenario probabilities by their frequencies of occurrence
in the sampled set, and solve this problem. If one can show that a polynomially
bounded N suffices to obtain a (1+ε)-optimal solution (to the original problem),
then one would obtain a reduction from the black-box problem to a polynomial-
scenario problem while losing a (1 + ε) factor. As mentioned earlier, Kleywegt
et al. [14] prove a sample-size bound for general 2-stage programs that depends
on the variance of a certain quantity, which need not be polynomially bounded.
Although this bound is tight in the black-box model for general 2-stage pro-
grams [24], for structured programs such as the class of 2-stage LPs considered
in [25], one can prove better bounds that do not follow directly from the bound
in [14]. Swamy and Shmoys [27] gave a polynomial bound for this class by build-
ing upon ideas used in the ellipsoid-based FPAS of Section 2. More recently,
Nemirovskii & Shapiro [19] showed that for the stochastic set cover problem,
additional analytical insights yield similar bounds as a further consequence of
the results of [14]. Thus, the SAA method yields a simpler, more efficient scheme
for this class of programs.

The proof in [27] uses (approximate) subgradients to identify a notion of close-
ness between the sample-average and true objective functions. Loosely speaking,
this notion captures the property that the ellipsoid-based FPAS can be made to
run identically on both the sample-average and the true problems, which intu-
itively suggests that optimizing the sample-average function is nearly equivalent
to optimizing the true function. Subsequently Charikar, Chekuri and Pál [3] gave
a different proof for roughly the same class of programs. While [27] only shows
that any optimal solution to the sample-average LP is a (1 + ε)-optimal solution
to the true LP (with high probability), Charikar et al. argue that by slightly
modifying the “standard” SAA approach, one can prove that any α-optimal
solution to the sampled problem is an (α + ε)-optimal solution to the true prob-
lem. This implies the remarkable consequence that one can, in effect, reduce
the black box model (for a class of 2-stage recourse minimization problems) to
the polynomial-scenario model. In Section 3, we gave a 3-approximation algo-
rithm for SUFL in the polynomial-scenario model. Likewise, by mimicking the
primal-dual algorithm for vertex cover one can obtain the same guarantee of
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2 for the stochastic problem in the polynomial-scenario model [21]. The above
result shows that these guarantees also extend to the black-box model.

We have described a variety of techniques for the design of approximation
algorithms for 2-stage stochastic linear and integer programs. This thread of al-
gorithmic analysis of stochastic optimization approximation algorithms has the
potential to bring together the insights and approaches from several disjoint re-
search communities: (traditional) stochastic programming, theoretical computer
science, and machine learning (where the flavor of learning a distribution based
on a limited number of samples plays a central role). There is much more work
remaining than has already been done, since the bulk of the work done thus far
in such black box settings does not extend to a variable number of stages, or to
settings beyond the simple expectation minimization objective.
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