
On continuous timed automata with input-determined
guards

Fabrice Chevalier1, Deepak D’Souza2, Pavithra Prabhakar2

1 LSV, ENS de Cachan
61 Av. Pres. Wilson, Cachan Cedex 94235, France.
fabrice.chevalier@lsv.ens-cachan.fr
2 Department of Computer Science and Automation
Indian Institute of Science, Bangalore 560012, India.
deepakd,pavithra@csa.iisc.ernet.in

Abstract. We consider a general class of timed automata parameterized by a set
of “input-determined” operators, in a continuous time setting. We show that for
any such set of operators, we have a monadic second order logic characterization
of the class of timed languages accepted by the corresponding class of automata.
Further, we consider natural timed temporal logics based on these operators, and
show that they are expressively equivalent to the first-order fragment of the cor-
responding MSO logics. As a corollary of these general results we obtain an
expressive completeness result for the continuous version of MTL.

1 Introduction

Timed automata are a popular model of real-time systems, introduced by Alur and Dill
in the early nineties [1]. Since then there have been several variants of these automata
based on input-determined guards [2–5]. Unlike the explicit clock based guards of timed
automata, an input-determined guard is based on a distance operator whose value is
completely determined by the input timed word and a time point in it. This property
leads to robust logical properties including closure under complementation which timed
automata lack. A good example of an input-determined operator is the event-recording
operator /a of [2] which measures the distance to the last time an event a occurred.
Similarly the “eventual” operator 3a [6, 5] inspired by the well-known timed logic
Metric Temporal Logic (MTL) [7, 2, 8], measures the time to “some” future occurrence
of an a event.

There have been two natural ways of employing these operators in automata and
logical formalisms in the literature. One is the traditional “pointwise” interpretation in
which guards are asserted only at “action-points” in a timed word. The other is the so-
called “continuous” interpretation in which assertions can be made at any time point
along the timed word. The two interpretations are well illustrated by the MTL formula
33[1,1]a which states that there is a point in future such that an a occurs exactly one
time unit later. In the pointwise semantics, the formula is not satisfied by the timed
word which comprises a b at time 1 followed by an a at time 3, but is satisfied in the
continuous semantics. In general, the continuous semantics is strictly more expressive
than the pointwise semantics [9, 10].

2

In the pointwise semantics, the work in [6] provides a general framework for show-
ing determinizability, closure properties, and monadic second-order (MSO) logic char-
acterizations, for classes of timed automata based on input-determined operators, called
input-determined automata (IDA’s). It also identifies natural timed temporal logics based
on these operators which are expressively complete with respect to the corresponding
automata classes.

In this paper we show a similar general framework for the continuous semantics.
Thus we first define an appropriate “continuous” version of these automata called con-
tinuous input-determined automata (CIDA’s) which are parameterized by a set of input-
determined operators. These CIDA’s extend IDA’s by allowing epsilon-transitions and
state invariants. We show that these classes of automata are determinizable and closed
under boolean operations. They also admit logical characterizations via natural MSO
logics based on the input-determined operators, and interpreted over continuous time.
Further, the continuous version of the natural timed temporal logics based on these op-
erators are shown to be expressively complete, in that they correspond to the first-order
fragments of the associated MSO logics. These results generalize to the corresponding
recursive formalisms where the input-determined operators take as arguments logical
formulas or “floating” automata, as originally used in the work of [11].

This framework can be used as a general technique for showing such results for
any class of automata and logics based on input-determined operators. In particular, the
results of [11] for the class of recursive event clock automata (ECA’s), pertaining to
the MSO characterization via the logic MinMaxML and the expressive completeness of
recursive Event Clock Temporal Logic (ECTL), follow as corollaries of our results.

As a new application, we obtain an expressive completeness result for MTL in the
continuous semantics. MTL can be viewed as the recursive timed temporal logic based
on the operator 3, and hence corresponds to the first-order fragment of recursive CIDA’s
and the MSO based on the operator 3.

The techniques used to prove our results are similar to [6] in that we also make use
of the notion of proper alphabets. These alphabets help in determinizing CIDA’s and
showing closure properties. For the MSO characterization we use proper alphabets to
translate formulas into a continuous version of Büchi’s MSO logic, which preserves,
in a sense, the original models of the formula. Now we need to make use of the fact
that the “untiming” of continuous MSO formulas is regular in order to obtain a CIDA
for the original MSO formula. We give an automata-theoretic proof of this result which
was independently proved by Rabinovich in [12] using a translation to classical MSO.
For the expressive completeness result concerning our timed temporal logics we factor
through the well-known result of Kamp for classical LTL [13].

The technique used in [11, 14] for event clock automata is similar in that they fac-
tor through Kamp’s theorem to prove their expressive completeness result. However
the MSO characterization is obtained differently by showing that quantified ECTL is
expressively equivalent to recursive ECA’s.

In this paper we deal with finite timed words, though the results can be easily ex-
tended to infinite words as well. Details of proofs omitted due to lack of space can be
found in the technical report [15].

3

2 Preliminaries

For an alphabet A, we use A∗ to denote the set of finite words over A. For a word w in
A∗, we use |w| to denote its length. We make use of the standard notations for regular
expressions, with ‘·’ for concatenation and ‘∗’ for Kleene closure.

A finite state automaton (FSA) A over a finite alphabet A is a structure A =
(Q, s, δ, F), where Q is a finite set of states, s is the initial state, δ ⊆ Q × A × Q is
the set of transitions, and F ⊆ Q is the set of final states. A run ρ of A on a word w =
a1 · · · an ∈ A∗ is a mapping from {0, · · · , n} → Q such that (ρ(i), ai+1, ρ(i+ 1)) ∈ δ
for each i < n, and ρ(0) = s. The run is accepting if ρ(n) ∈ F . The symbolic lan-
guage accepted by A, denoted Lsym(A), is the set of words in A∗ over which A has an
accepting run.

We denote the set of non-negative and positive real numbers by R≥0. We use IR≥0

to denote the set of intervals, where an interval is a convex subset of R≥0. Two interval
I and J are adjacent if I ∩ J = ∅ and I ∪ J is an interval. We use IQ to denote the set
of intervals whose end-points are rational or ∞.

Let A be an alphabet and let f : [0, r] → A be a function, where r ∈ R≥0. We
denote r by length(f). We call f a finitely varying function overA, if there exist a word
a0a1 · · · a2n in A∗, and an interval sequence I0I1 · · · I2n, such that 0 ∈ I0, Ii and Ii+1

are adjacent for each i, Ii is singular if i is even, and for all t ∈ [0, r], f(t) = ai if t ∈
Ii. We then call (a0, I0) · · · (a2n, I2n) an interval representation of f . We call a word
a0a1 · · · an in A∗ canonical, if n is even, and there does not exist an even i such that
0 < i < n and ai−1 = ai = ai+1. An interval representation (b0, I0) · · · (b2n, I2n) of
f is called canonical, if b0 · · · b2n is canonical. Note that every finitely varying function
has a canonical interval representation. We define func(A) to be the set of all finitely
varying functions over A.

Let f ∈ func(A) and let (a0, I0) · · · (a2n, I2n) be its canonical interval represen-
tation. We denote the untiming of the function as a sequence which captures explicitly
the points of discontinuities and the intervals between them. The untiming of the above
f , denoted untiming(f), is defined as a0 · · ·a2n. Note that the untiming of a function
is always canonical. Given a word w in A∗, we define its timing to be a set of func-
tions: timing(w) = ∅ if |w| is even, otherwise f ∈ timing(w) if w = a0a1 · · · a2n

and (a0, I0)(a1, I1) · · · (a2n, I2n) is an interval representation of f . We can extend the
definitions of timing and untiming to languages of functions in the expected way.

We define a timed word σ over an alphabet Σ to be an element of (Σ × R≥0)
∗,

such that σ = (a0, t0)(a1, t1) · · · (an, tn) and t0 < t1 < · · · < tn. We denote the set
of all timed words over Σ by TΣ∗. We define an input-determined operator ∆ over
an alphabet Σ as a partial function from (TΣ∗ × R≥0) to 2R≥0 , which is defined for
all pairs (σ, t), where t ∈ [0, length(σ)]. Given a set of input-determined operators
Op, we define the set of guards over Op, denoted by G(Op), inductively as g ::=
> |∆I | ¬g | g ∨ g | g ∧ g, where ∆ ∈ Op and I ∈ IQ. Guards of the form ∆I are
called atomic. Given a timed word σ, we define the satisfiability of a guard g at time
t ∈ [0, length(σ)], denoted σ, t |= g, as σ, t |= ∆I iff ∆(σ, t) ∩ I 6= ∅, and in the
usual way for the boolean operators. For example ∆Q, which maps (σ, t) to {1} if t is
rational and to {0} otherwise, is an input-determined operator. Other examples include
the eventual operator 3a, inspired by MTL, which maps (σ, t) to the set of time points

4

in σ after t at which an event a occurs, and the event-recording operator /a which maps
(σ, t) to the set containing the time point which corresponds to the last occurrence of
the event a before time t.

We call an input-determined operator ∆ over Σ finitely varying if for all σ ∈ TΣ∗

and I ∈ IQ, the function f∆ : [0, length(σ)] → {0, 1} defined as, f∆(t) is 1 if σ, t |=
∆I , and 0 otherwise, is finitely varying. The operators 3a and /a are finitely varying,
whereas ∆Q is not.

LetΣ be an alphabet and Op be a set of input determined operators overΣ. We call
(Γ1, Γ2) a symbolic alphabet over (Σ,Op), if Γ1 is a finite subset of (Σ∪{ε})×G(Op)
and Γ2 is a finite subset of G(Op). We define the set of timed words over Σ associated
with a function f in func(Γ1 ∪ Γ2), denoted tw(f), as follows. If untiming(f) 6∈
Γ1 · (Γ2 · Γ1)

∗, then tw(f) = ∅. Otherwise, a timed word σ = (a1, t1) · · · (an, tn) is in
tw(f), provided for all t ∈ [0, length(f)],

– f(t) = (a, g), for some a ∈ Σ and g ∈ G(Op), if there exists i such that i ∈
{1, · · · , n}, ti = t and ai = a, and if σ, t |= g, and

– f(t) = (ε, g) or g, for some g ∈ G(Op), if there does not exist i such that i ∈
{1, · · · , n}, ti = t, and if σ, t |= g.

Note that for any f , tw(f) is either a singleton set or an empty set. We can extend the
definition of tw to a set of functions as the union of the timed words corresponding to
each function in the set.

LetG be a finite set of atomic guards over Op. We call (Γ1, Γ2) the proper symbolic
alphabet over (Σ,Op) based on G, if Γ1 = (Σ ∪ {ε}) × 2G and Γ2 = 2G. A proper
word is a word over a proper symbolic alphabet. Further we call a proper word γ over
(Γ1 ∪ Γ2) fully canonical, if γ ∈ Γ1 · (Γ2 · Γ1)

∗ and no subword of γ is of the form
g · (ε, g) · g. If f ∈ func(Γ1 ∪ Γ2), then we associate with it the set of timed words
obtained by interpreting g ⊆ G as the guard

∧
h∈g h ∧

∧
h∈G−g ¬h.

Example 1. Let Σ = {a}, Op = {3a} and G = {3
[1,1]
a }. The proper alphabet

(Γ1, Γ2) is given by Γ1 = (Σ ∪{ε})×2G and Γ2 = 2G. Let f1 : [0, 2] → Γ1 ∪Γ2 such
that f1(0) = f1(2) = (a, ∅), f1(1) = (ε, {3

[1,1]
a }) and f(t) = ∅ if t 6= 0, 1, 2. We then

have tw(f1) = {(a, 0)(a, 2)}. Let f2 : [0, 2] → Γ1 ∪ Γ2 defined by f2(1) = (ε, ∅) and
f2(t) = f1(t) if t 6= 1. Then tw(f2) = ∅.

3 Continuous Input Determined Automata

Let Σ be an alphabet and Op be a set of input determined operators based on Σ.
A Continuous Input Determined Automaton (CIDA) A over (Σ,Op) is a structure
(Q, s, δ, F, inv) on a symbolic alphabet (Γ1, Γ2) over (Σ,Op), where Q is a finite set
of states, s ∈ Q is the start state, δ ⊆ Q×Γ1×Q is the transition relation, inv : Q→ Γ2

is the labelling function for the states, and F ⊆ Q is the set of accepting states.
We now define the symbolic language accepted by the CIDA A. Let γ ∈ Γ1 · (Γ2 ·

Γ1)
∗ and let γ = γ0γ1 · · · γ2n. Let N = {0, · · · , n + 1}. A run of A over γ is a

map ρ : N → Q such that ρ(0) = s, (ρ(i), γ2i, ρ(i + 1)) ∈ δ for i = 0, · · · , n and
inv(ρ(i)) = γ2i−1 for all 1 ≤ i ≤ n. We say ρ is accepting if ρ(n + 1) ∈ F . The

5

symbolic language defined by A, denoted Lsym(A), is the set of words in Γ1 · (Γ2 ·
Γ1)

∗ over which A has an accepting run. Note that a language L is a regular subset of
Γ1 · (Γ2 · Γ1)

∗ iff it is the symbolic language of a CIDA.
We define the language of functions accepted by the CIDA A, denoted F (A), as

timing(Lsym(A)). The timed language of the CIDA A, denoted L(A), is defined as
tw(F (A)).

We give below a concrete example of a CIDA, which we call Continuous Eventual
Timed Automata (CETA). A CETA over an alphabetΣ is a CIDA over (Σ,Op), where
Op = {3a | a ∈ Σ} is the set of eventual operators based on Σ. The diagram below
gives a CETA over {a, b} which recognizes the language Lni (for “no insertion”),
which consists of timed words in which between any two consecutive a’s, there does
not exist a time point from which at time distance one in the future there is an a or a b.

(a,>
)

(a
,>

)
(b,>

)

¬(3a ∈ [1, 1] ∨ 3b ∈ [1, 1])

(a,>)
>

>

(ε,>), (b,>) (a,>)

We define a proper CIDA to be a structure similar to CIDA except that it is over a
proper symbolic alphabet instead of a symbolic alphabet. We call a proper CIDA fully
canonical if its symbolic language consists of fully canonical proper words. We show
below the closure of CIDA’s under the boolean operations. Let Σ be an alphabet and
Op be a set of finitely varying operators.

Lemma 1. CIDA’s over (Σ,Op) and fully canonical proper CIDA’s over (Σ,Op)
define the same class of timed languages.

Theorem 1. The class of CIDA’s over (Σ,Op) is closed under union, intersection and
complementation.

Proof. Union of CIDA’s is equivalent to the union of their symbolic languages. For
complementation, using lemma 1 we can give an equivalent fully canonical proper
CIDA A′ for a given CIDA A. But the set of timed words associated with two distinct
fully canonical proper words is disjoint. Hence we can complement the timed language
of A′ by complementing its symbolic language with respect to the set of fully canonical
proper words. ut

4 Continuous Monadic Second Order Logic

In this section, we interpret Buchi’s monadic second order logic over finitely varying
functions and show that the untiming of the language of functions definable in the logic
is regular.

6

Recall that for an alphabetA, Büchi’s monadic second order logic (denoted here by
MSOc(A)) is given as follows:ϕ ::= Qa(x) |x ∈ X |x < y | ¬ϕ | (ϕ∨ϕ) | ∃xϕ | ∃Xϕ,
where a ∈ A, and x andX are first and second order variables, respectively. We use the
convention that the small letters are first order variables and capital letters are second
order variables.

We interpret a formula of the logic over a finitely varying function f in func(A),
along with an interpretation I with respect to f , which assigns to a first order variable
x, a value in [0, length(f)], and to a set variableX , a finite subset of [0, length(f)]. We
use X ⊆fin Y to denote that X is a finite subset of Y .

For an interpretation I, we use the notation I[t/x] to denote the interpretation which
sends x to t and agrees with I on all other variables. Similarly, I[B/X] denotes the
modification of I which maps the set variable X to B and the rest to the same as that
by I. We also use the notation [t/x] to denote an interpretation which sends x to t when
the rest of the interpretation is irrelevant.

We now define the semantics of MSOc(A). Given a formula ϕ ∈ MSOc(A), f ∈
func(A) and an interpretation I with respect to f to the variables in ϕ, the satisfaction
relation f, I |= ϕ, is defined inductively as:

f, I |= Qa(x) iff f(I(x)) = a, where a ∈ A.
f, I |= x ∈ X iff I(x) ∈ I(X).
f, I |= x < y iff I(x) < I(y).
f, I |= ¬ϕ iff f, I 6|= ϕ.
f, I |= ϕ1 ∨ ϕ2 iff f, I |= ϕ1 or f, I |= ϕ2.
f, I |= ∃xϕ iff ∃t ∈ [0, length(f)] : f, I[t/x] |= ϕ.
f, I |= ∃Xϕ iff ∃B ⊆fin [0, length(f)] : f, I[B/X] |= ϕ.

For a sentence, a formula without free variables, the interpretation does not play
any role. Hence, for a sentence ϕ in MSOc(A), we set the language defined by ϕ to be
F (ϕ) = {f ∈ func(A) | f |= ϕ}. The following theorem relates FSA’s and MSOc.

Theorem 2. Given a sentence ϕ in MSOc(A), we can give a finite state automaton Aϕ

such that F (ϕ) = timing(Lsym(Aϕ)).

Proof. We construct the automaton for a formulaϕ ∈ MSOc(A), inductively. Let X =
(x1, x2, · · · , xn) and Y = (X1, X2, · · · , Xm) be the free variables in ϕ. We give an
automaton AX,Y

ϕ over A′ = A × {0, 1}n+m, which is related to ϕ as follows. Let
f ∈ func(A) and I be an interpretation of the variables in (X,Y) with respect to f .
Then f, I |= ϕ iff untiming(f

(X,Y)
I) ∈ AX,Y

ϕ . The function f (X,Y)
I : [0, length(f)] →

A′ is defined as, f (X,Y)
I (t) = (f(t), i1, i2, · · · , in, j1, j2, · · · , jm), where ik = 1 if

I(xk) = t and 0 otherwise, and jk = 1 if t ∈ I(Xk) and 0 otherwise. Let Ai
canon be

the automaton which accepts canonical words over A × {0, 1}i. We consider here the
cases when ϕ is Qa(x) and ∃xϕ, and the detailed proof can be found in [15].

If ϕ = Qa(x), then the automaton AX,Y
ϕ is the intersection of A1

canon with:

(a, 1)

(−, −) (−,−)

7

Suppose ϕ = ∃xη. Let AX,Y
η be the automaton for η, where (X,Y) are the free

variables in η, and X = (x, x1, · · · , xn). Let X ′ = (x1, · · · , xn). We first intersect
AX,Y
η with Avalid , which accepts words in which there is exactly one symbol with a

1 for its x-component at some even position (assuming indices start from 0). We then
project away the x-components of the labels on the transitions in the automaton. Next
we canonicalize the resulting automaton in two steps. First we convert the automaton
to one that is in the form of a bipartite graph in which the transitions are only from the
states in one set to the other. We then add transitions as described below repeatedly until
no more can be added. A transition (p, a, r) is added if there exist transitions (p, a, q),
(q, a, q′) and (q′, a, r). The above construction relies on the fact that if f (X,Y)

I is in
the timing of w, then f (X′,Y)

I′ is in the timing of w′, where w′ is obtained from w by
projecting away its x-component and I

′ is an interpretation to the variables in (X ′, Y)
which agrees with I on the common variables. Finally we intersect the automaton with
An+m

canon where m is the number of variables in Y . ut

5 A logical characterization of CIDA’s

In this section we give a logical characterization of CIDA’s in terms of a monadic
second order logic parameterized by a set of input-determined operators. Let Σ be an
alphabet and Op be a set of input determined operators overΣ. We define the syntax of
continuous timed monadic second order logic over (Σ,Op)(TMSOc(Σ,Op)) as:

ϕ ::= Qa(x) |∆
I (x) |x ∈ X |x < y | ¬ϕ | (ϕ ∨ ϕ) | ∃xϕ | ∃Xϕ,

where a ∈ Σ, ∆ ∈ Op, I ∈ IQ, and x and X are first and second order variables. We
interpret the logic over timed words in TΣ∗. Given a formula ϕ ∈ TMSOc(Σ,Op),
a timed word σ = (a1, t1) · · · (an, tn) in TΣ∗, and an interpretation I with respect
to σ, which maps a first order variable x to t ∈ [0, length(σ)] and a second order
variable X to B ⊆fin [0, length(σ)], we define the satisfaction relation σ, I |= Qa(x)
as ∃i : ai = a, ti = I(x), and σ, I |= ∆I(x) as ∆(σ, I(x)) ∩ I 6= ∅, and the rest of the
cases are similar to that of MSOc over functions. For a sentence ϕ in TMSOc(Σ,Op),
we set the timed language defined by ϕ to be L(ϕ) = {σ ∈ TΣ∗ |σ |= ϕ}. We now
show that TMSOc characterizes CIDA’s.

Theorem 3. Let Σ be a finite alphabet and Op be a set of finitely varying input-
determined operators based on Σ. Let L be a timed language over Σ. Then L is ac-
cepted by a CIDA over (Σ,Op) iff it is definable by a TMSOc(Σ,Op) sentence.

We devote the rest of the section for a proof of the above theorem. As a proof of the
forward direction, we show that the class of languages defined by proper CIDA’s over
(Σ,Op) is a subset of the class of languages defined by TMSOc(Σ,Op) sentences. Let
A = (Q, s, δ, F, inv) be a proper CIDA over (Γ1, Γ2) based on a set of atomic guards
G over Op. We give a formula ϕA such that L(A) = L(ϕA). The formula essentially
checks for the existence of a valid run of A over the timed words. Let δ = {e1, · · · , em}
be the set of transitions. We set (e, e′) ∈ consec if and only if there exists q such that

8

e = (p, γ, q) and e′ = (q, γ′, r). We use action(x) for
∨
a∈Σ Qa(x). Given g ⊆ G,

we will use g(x) to denote the TMSOc formula
∧
∆I∈g∆

I(x) ∧
∧
∆I∈G−g ¬∆

I(x).
The second order variables Xe1 , · · · , Xem

are used to capture the points in the timed
words which correspond to the transitions e1, · · · , em, respectively, and X to capture
their union. Let between(x, y, z) = x < y ∧ y < z, first(x) = ¬∃y(y < x), last(x) =
¬∃y(x < y) and next(x, y,X) = x ∈ X ∧ y ∈ X ∧ ¬∃w(x < w ∧ w < y ∧ w ∈ X).

ϕA is given by: ∃X∃Xe1 · · · ∃Xem
(ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5 ∧ ϕ6 ∧ ϕ7), where:

ϕ1 : ∀x(
∨
e∈δ x ∈ Xe ⇔ x ∈ X)

∧
∀x

∧
i,j∈{1,··· ,m},i6=j(x ∈ Xei

⇒ x 6∈ Xej
).

ϕ2 : ∀x(first(x) ⇒
∨

(s,γ,q)∈δ x ∈ X(s,γ,q)).

ϕ3 : ∀x(last(x) ⇒
∨

(q,γ,f)∈δ,f∈F x ∈ X(q,γ,f)).

ϕ4 : ∀x∀y(next(x, y,X) ⇒
∨
e,e′∈consec(x ∈ Xe ∧ y ∈ Xe′)).

ϕ5 : ∀x
∧

(p,(a,g),q)∈δ(x ∈ X(p,(a,g),q) ⇒ (Qa(x) ∧ g(x))).

ϕ6 : ∀x
∧

(p,(ε,g),q)∈δ(x ∈ X(p,(ε,g),q) ⇒ (¬action(x) ∧ g(x))).

ϕ7 : ∀x∀y∀z((next(y, z) ∧ between(y, x, z)) ⇒
(
∧

(p,a,q)∈δ(y ∈ X(p,a,q) ⇒ (¬action(x) ∧ [inv (q)](x))))).

In the other direction we reduce a TMSOc formula to an MSOc formula and then
factor through theorem 2 to get an FSA over Γ1 ∪ Γ2. Let ϕ ∈ TMSOc(Σ,Op) and
let G = {∆I |∆I(x) is a subformula of ϕ}. Let (Γ1, Γ2) be the proper alphabet over
(Σ,Op) based onG, and let Γ = Γ1∪Γ2. We now give the function tmso-mso, which
maps a TMSOc(Σ,Op) formula ϕ to the MSOc(Γ) formula obtained by replacing ev-
ery atomic formulaQa(x) by

∨
(a,g)∈Γ Q(a,g)(x) and∆I(x) by

∨
(c,g)∈Γ,∆I∈g Q(c,g)(x)

∨
∨
g∈Γ,∆I∈g Qg(x).

Theorem 4. Given a sentence ϕ ∈ TMSOc(Σ,Op), L(ϕ) = tw(F (tmso-mso (ϕ))).
TMSO

c − ϕ

MSO
c − ϕ̃ FSA − Aϕ̃

CIDA − A′

We can now complete the proof by taking the route in the diagram above. From
theorem 4, L(ϕ) = tw(F (ϕ̃)), where ϕ̃ = tmso-mso(ϕ). By theorem 2 there exists
an FSA Aϕ̃ such that F (Lsym(Aϕ̃)) = F (ϕ̃). Hence L(ϕ) = tw(F (Lsym(Aϕ̃))). We
can assume that Lsym(Aϕ̃) ⊆ Γ1 · (Γ2 · Γ1)

∗ as words not in Γ1 · (Γ2 · Γ1)
∗ do not

have any timed words associated with them. Thus we can give a CIDA A′ such that
Lsym(A′) = Lsym(Aϕ̃). It now follows that L(ϕ) = L(A′).

6 Continuous Timed Linear Temporal Logic
In this section we identify a natural, expressively complete, timed linear temporal logic
based on a set of input-determined operators. The logic is denoted TLTLc(Σ,Op),
parameterized by the alphabet Σ and the set of input-determined operators Op over Σ.
The formulas of TLTLc are given by:

θ ::= a |∆I | (θUθ) | (θSθ) | ¬θ | (θ ∨ θ),

9

where a ∈ Σ, ∆ ∈ Op and I ∈ IQ. We interpret TLTLc(Σ,Op) formulas over
timed words over Σ. Let ϕ be a TLTLc(Σ,Op) formula. Let σ ∈ TΣ∗, with σ =
(a1, t1) · · · (an, tn) and let t ∈ [0, length(σ)]. Then the satisfaction relation σ, t |= ϕ is
given by:

σ, t |= a iff ∃i : ai = a, ti = t.
σ, t |= ∆I iff ∆(σ, t) ∩ I 6= ∅.
σ, t |= θUη iff ∃t′ : t < t′ ≤ length(σ), σ, t′ |= η, ∀t′′ : t < t′′ < t′, σ, t′′ |= θ.
σ, t |= θSη iff ∃t′ : 0 ≤ t′ < t, σ, t′ |= η, ∀t′′ : t′ < t′′ < t, σ, t′′ |= θ.

It is defined in the usual manner for the boolean combinations. The language defined
by a TLTLc(Σ,Op) formula θ is given by L(θ) = {σ ∈ TΣ∗ |σ, 0 |= θ}.

We show that TLTLc is expressively equivalent to the first order fragment of TMSOc.
Let us denote by TFOc(Σ,Op) the first order fragment of TMSOc(Σ,Op) (i,e, the
fragment we get by disallowing quantification over set variables). The logics TLTLc

and TFOc are expressively equivalent in the following sense:

Theorem 5. Let Σ be an alphabet and Op be a set of finitely varying input-determined
operators overΣ. A timed languageL ⊆ TΣ∗ is definable by a TLTLc(Σ,Op) formula
θ iff it is definable by a sentence ϕ in TFOc(Σ,Op).

Proof. The proof of the forward direction is similar to the classical translation of LTL
to MSO. In the converse direction a more transparent proof is obtained by factoring
through Kamp’s result for classical LTLc. Recall that the syntax of LTLc(A) is given
by: θ ::= a | (θUθ) | (θSθ) | ¬θ | (θ ∨ θ), where a ∈ A. The logic is interpreted over
functions f ∈ func(A). Given t ∈ [0, length(f)] and θ ∈ LTLc(A), the satisfaction
relation f, t |= a is defined as f(t) = a, and for the rest of the cases it is defined as for
TLTLc. Let FOc(A) denote the first order fragment of MSOc(A). Then the result due
to Kamp [13] states that:

Theorem 6 ([13]). LTLc(A) is expressively equivalent to FOc(A).
Let ϕ be a TFOc(Σ,Op) sentence. By theorem 4 the function tmso-mso maps a

TFOc(Σ,Op) formula to an FOc(Γ) formula ϕ̃ = tmso-mso(ϕ) such that L(ϕ) =
tw(F (ϕ̃)). By Kamp’s result, there exists a mapping fo-ltl such thatF (ϕ̃) = F (fo-ltl(ϕ̃)).
Let θ = fo-ltl(ϕ̃). Let a ∈ Σ, g ∈ G and (a, g) ∈ Γ . Let θg =

∧
h∈g h ∧

∧
h∈G−g ¬h.

We define the function ltl -tltl which maps an LTLc(Γ) formula θ to a TLTLc(Σ,Op)
formula obtained by replacing each atomic formula (a, g) by a∧θg, (ε, g) by¬

∨
c∈Σ c∧

θg ∧ ¬(gSg ∧ gUg) and g by ¬
∨
c∈Σ c ∧ θg ∧ (gSg ∧ gUg). We then have L(ϕ) =

tw(F (ϕ̃)) = tw(F (θ)) = L(ltl -tltl(θ)). So ltl -tltl(θ) is the TLTLc(Σ,Op) formula
equivalent to ϕ.

7 Recursive continuous input determined automata

We now consider “recursive” CIDA’s. The main motivation is to increase the expres-
sive power of our automata, as well as to characterize the expressiveness of recursive
temporal logics which occur naturally in the real-time settings.

10

We define a recursive input-determined operator ∆ over an alphabet Σ as a partial
function from (2R≥0 × TΣ∗ × R≥0) to 2R≥0 , which is defined for tuples (X, σ, t)
where X ⊆ R≥0, σ ∈ TΣ∗ and t ∈ [0, length(σ)]. Given a recursive operator ∆
and a set X ⊆ R≥0, We denote by ∆X , the operator whose semantics is given by
∆X(σ, t) = ∆(X, σ, t). We call a set X finitely varying if there exists a finitely varying
function f : [0, r] → {0, 1} such that X ⊆ [0, r] and f(t) = 1 if and only if t ∈ X . We
call a recursive operator ∆ finitely varying if for every finitely varying set X , ∆X is a
finitely varying operator.

Given a timed word σ in TΣ∗ and a t ∈ [0, length(σ)] we call the pair (σ, t) a
floating timed word over Σ. A floating timed language is then a set of floating timed
words. We will use the notationΣ ′ for (Σ∪{ε})×{0, 1}. Given σ′ ∈ TΣ′∗, we denote
by σ the timed word obtained from σ′ by projecting away the {0, 1} component from
each pair and then dropping any ε’s in the resulting word. A timed word σ ′ over the
alphabet Σ′ which contains exactly one symbol from (Σ ∪ {ε})× {1}, and whose last
symbol is fromΣ ×{0, 1}, defines the floating timed word (σ, t) where t is the time of
the unique action which has a 1-extension. We use fw to denote the (partial) map which
given a timed word σ′ over Σ′ returns (σ, t) and extend it to apply to timed languages
over Σ′ in the natural way.

LetΣ be an alphabet and Op be a set of input determined operators. Given∆ ∈ Op,
we use the notation∆′ for the operator overΣ ′ with the semantics∆′(σ′, t) = ∆(σ, t).
We use the notation Op ′ to denote the set {∆′ |∆ ∈ Op}. We now define a floating
CIDA over (Σ,Op) to be a CIDA over (Σ ′,Op′). We define the floating language of
a floating CIDA B, denoted Lfl(B), as fw (L(B)).

We define the recursive continuous input determined automata (rec-CIDA’s) and
the floating recursive continuous input determined automata (frec-CIDA’s) over an al-
phabet Σ and a set of recursive operators Rop based on Σ, as the union of level i
rec-CIDA’s and level i frec-CIDA’s, for all i ∈ N, respectively.

– A level 0 rec-CIDA A is a CIDA overΣ that uses only the guard >. It accepts the
timed language L(A). A level 0 frec-CIDA B is a floating CIDA over Σ which
uses only the guard >. It accepts the floating language Lfl (B).

– Let C be a finite collection of frec-CIDA’s of level i or less over (Σ,Rop). Let
Op be the set of operators {∆B |∆ ∈ Rop,B ∈ C}, where the semantics of each
∆B is defined as follows. Let pos(σ,B) = {t ∈ [0, length(σ)] | (σ, t) ∈ Lfl (B)}.
Then ∆B(σ, t) = ∆(pos(σ,B), σ, t). We say that an operator ∆B is of level j if
B is a level j frec-CIDA. A level i + 1 rec-CIDA(Σ,Rop) is a CIDA(Σ,Op)
which uses at least one operator of level i. And a level i + 1 frec-CIDA(Σ,Rop)
is a floating CIDA(Σ,Op) which uses at least one operator of level i.

We now introduce the recursive version of TMSOc and show that it characterizes
the class of timed languages defined by rec-CIDA. Given an alphabet Σ and a set
of recursive operators Rop, the set of formulas of rec-TMSO c(Σ,Rop) are defined
inductively as:

ϕ ::= Qa(x) |∆
I
ψ(x) |x < y |x ∈ X | ¬ϕ |ϕ ∨ ϕ | ∃xϕ | ∃Xϕ,

where a ∈ Σ, ∆ ∈ Rop, I ∈ IQ and ψ is a rec-TMSOc formula with a single free
variable z.

11

The logic is interpreted over timed words in TΣ∗. If ϕ contains no predicates of
the form “∆I

ψ(x)”, then σ, I |= ϕ is defined as for TMSOc. Inductively we assume that
σ, I |= ψ is defined where ψ has a single free variable z. Let pos(σ, ψ) = {t |σ, [t/z] |=
ψ} be the set of interpretations of z which make ψ true in σ. We then consider ∆ψ as
an operator with the semantics ∆ψ(σ, t) = ∆(pos(σ, ψ), σ, t). The rest of the interpre-
tation is similar to TMSOc.

We note that each rec-TMSO c(Σ,Rop) formula can be viewed as a TMSOc(Σ,Op)
formula where Op is the set of ∆ψ’s which have a top-level occurrence, i.e., they are
not in the scope of any other ∆ operator.

A rec-TMSOc(Σ,Rop) sentence ϕ defines the languageL(ϕ) = {σ ∈ TΣ∗ |σ |=
ϕ}. A rec-TMSOc(Σ,Rop) formula ψ with one free variable z defines the floating
language Lfl(ψ) = {(σ, t) |σ, [t/z] |= ψ}. We have the following characterization.

Theorem 7. Let Rop be a set of finitely varying recursive operators and Σ be a finite
alphabet. L ⊆ TΣ∗ is accepted by a rec-CIDA over (Σ,Rop) iff L is definable by a
rec-TMSOc(Σ,Rop) sentence.

We now define a recursive timed temporal logic along the lines of [6] and show that
it is expressively complete. It is similar to the logic TLTLc and is parameterized by
an alphabet Σ and a set of recursive input-determined operators Rop, and is denoted
rec-TLTLc(Σ,Rop). The syntax of the logic is given by

θ ::= a |∆I
θ | (θUθ) | (θSθ) | ¬θ | (θ ∨ θ),

where a ∈ Σ,∆ ∈ Rop and I ∈ IQ. The logic is interpreted over timed words in a man-
ner similar to TLTLc, where the satisfaction of the predicate∆I

θ by σ at t is equivalent
to ∆(pos(σ, θ), σ, t) ∩ I = ∅, and pos(σ, θ) = {t ∈ R≥0 |σ, t |= θ}. Let us denote by
rec-TFOc(Σ,Rop) the first order fragment of the logic rec-TMSO c(Σ,Rop). Then
we have the following expressiveness result:

Theorem 8. rec-TLTLc(Σ,Rop) is expressively equivalent to rec-TFO c(Σ,Rop).

8 Expressive completeness of MTL

As an application of the results in this paper we show that the logic Metric Temporal
Logic (MTLc) in the continuous semantics introduced in [7] is expressively equivalent
to rec-TFOc for a suitably defined set of recursive input-determined operators. We
define the logic MTLc(Σ) inductively as below:

θ ::= a | (θUIθ) | (θSIθ) | ¬θ | (θ ∨ θ),

where a ∈ Σ and I ∈ IQ. The modalities UI and SI are interpreted as follows for a
timed word σ and t ∈ [0, length(σ)].

σ, t |= θUIη iff ∃t′ ≥ t : t′ − t ∈ I, σ, t′ |= η, and ∀t′′ : t < t′′ < t′, σ, t′′ |= θ.
σ, t |= θSIη iff ∃t′ ≤ t : t− t′ ∈ I, σ, t′ |= η, and ∀t′′ : t′ < t′′ < t, σ, t′′ |= θ.

12

We first observe that MTLc(Σ) is expressively equivalent to its sublogic MTLc3(Σ)
in which the modalities UI and SI are replaced by the modalities U , S, 3I and 3-I ,
where θUη = θU(0,∞)η, θSη = θS(0,∞)η, 3Iθ = >UIθ and 3-Iθ = >SIθ. To show
the equivalence we need to consider only the cases when I = [l, l] and I = (l, r). If
I = [l, l], then θUIη = ¬3(0,l)¬θ∧3[l,l]η, otherwise I = (l, r) in which case θUIη =
¬3(0,l]¬θ ∧3[l,l](θUη) ∧3(l,r)η. Next we consider the logic rec-TLTLc(Σ, {3,3-})
where the semantics of 3 and 3- is defined as 3(X, σ, t) = {t′ − t | t′ ≥ t, t ∈ X}
and 3-(X, σ, t) = {t− t′ | t′ ≤ t, t ∈ X}. The logic MTLc3(Σ) is clearly expressively
equivalent to rec-TLTLc(Σ, {3,3-}), since the predicates 3Iθ and 3

I
θ are equivalent.

Further 3 and 3- are finitely varying recursive operators. Hence,

Theorem 9. MTLc(Σ) is expressively equivalent to rec-TFO c(Σ, {3,3-}).

References
1. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183–235, 1994.
2. R. Alur, T. Feder and T.A. Henzinger. The Benefits of Relaxing Punctuality. Journal of the

ACM, 43(1):116–146, 1996.
3. J. F. Raskin and P. Y. Schobbens. State Clock Logic: A Decidable Real-Time Logic. In

HART, pages 33–47, 1997.
4. D. D’Souza and P. S. Thiagarajan. Product Interval Automata: A Subclass of Timed Au-

tomata. In FSTTCS, pages 60–71, 1999.
5. D. D’Souza and M. Raj Mohan. Eventual Timed Automata. In FSTTCS, pages 322-334,

2005.
6. D. D’Souza and N. Tabareau. On timed automata with input-determined guards. FOR-

MATS/FTRTFT, volume 3253 of LNCS, 68-83, Springer, 2004.
7. R. Koymans. Specifying Real-Time Properties with Metric Temporal Logic. Real-Time

Systems, 2(4):255-299, 1990.
8. J. Ouaknine and J. Worrel. On the Decidability of Metric Temporal Logic. In LICS, pages

188-197. IEEE Computer Society, 2005.
9. P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of TPTL and MTL. In

FSTTCS, pages 432-443, 2005.
10. P. Prabhakar and D. D’Souza. On the expressiveness of MTL with past operators. Techni-

cal Report IISc-CSA-TR-2006-5 Indian Institute of Science, Bangalore 560012, India, May,
2006. URL: http://archive.csa.iisc.ernet.in/TR/2006/5/

11. T. A. Henzinger and J. F. Raskin and P. Y. Schobbens. The Regular Real-Time Languages.
In ICALP, volume 1443 of LNCS, pages 580-591. Springer, 1998.

12. A. M. Rabinovich. Finite variability interpretation of monadic logic of order. Theor. Comput.
Sci., 275(1-2):111-125, 2002.

13. J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of
California, Los Angeles, California, 1968.

14. J. F. Raskin. Logics, Automata and Classical Theories for Deciding Real-Time. PhD thesis,
FUNDP, Belgium, 1999.

15. F. Chevalier and D. D’Souza and P. Prabhakar. On continuous timed au-
tomata with input-determined guards. Technical Report IISc-CSA-TR-2006-
7 Indian Institute of Science, Bangalore 560012, India, June, 2006. URL:
http://archive.csa.iisc.ernet.in/TR/2006/7/

