Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4337))

Abstract

We consider the safety fragment of linear temporal logic with the freeze quantifier. The freeze quantifier is used to store a value from an infinite domain in a register for later comparison with other such values. We show that, for one register, satisfiability, refinement and model checking problems are decidable. The main result in the paper is that satisfiability is ExpSpace-complete. The proof of ExpSpace-membership involves a translation to a new class of faulty counter automata. We also show that refinement and model checking are not primitive recursive, and that dropping the safety restriction, adding past-time temporal operators, or adding one more register, each cause undecidability of all three decision problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schnoebelen, P.: The complexity of temporal logic model checking. In: AiML 2002. Advances in Modal Logic, vol. 4, pp. 393–436. King’s College Publications (2003)

    Google Scholar 

  2. Lisitsa, A., Potapov, I.: Temporal logic with predicate λ-abstraction. In: TIME, pp. 147–155. IEEE, Los Alamitos (2005)

    Google Scholar 

  3. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic on words with data. In: LICS, pp. 7–16. IEEE, Los Alamitos (2006)

    Google Scholar 

  4. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on data trees and XML reasoning. In: PODS, pp. 10–19. ACM, New York (2006)

    Google Scholar 

  5. Ouaknine, J., Worrell, J.: On the decidability of Metric temporal logic. In: LICS, pp. 188–197. IEEE, Los Alamitos (2005)

    Google Scholar 

  6. French, T.: Quantified propositional temporal logic with repeating states. In: TIME-ICTL, pp. 155–165. IEEE, Los Alamitos (2003)

    Google Scholar 

  7. Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: decidability and complexity. In: TIME, pp. 113–121. IEEE, Los Alamitos (2005)

    Google Scholar 

  8. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. In: LICS, pp. 17–26. IEEE, Los Alamitos (2006)

    Google Scholar 

  9. Kaminski, M., Francez, N.: Finite-memory automata. TCS 134(2), 329–363 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. In: ACM TOCL, vol. 5(3), pp. 403–435 (2004)

    Google Scholar 

  11. Sistla, A.P.: Safety, liveness and fairness in temporal logic. Formal Aspects of Computing 6(5), 495–512 (1994)

    Article  MATH  Google Scholar 

  12. Ouaknine, J., Worrell, J.B.: Safety metric temporal logic is fully decidable. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 411–425. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Odifreddi, P.: Classical Recursion Theory II. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  14. David, C.: Mots et données infinies. Master’s thesis, LIAFA (2004)

    Google Scholar 

  15. Schnoebelen, P.: Deciding termination of ICMETs, Personal communication (2006)

    Google Scholar 

  16. Brzozowski, J.A., Leiss, E.L.: On equations for regular languages, finite automata, and sequential networks. TCS 10(1), 19–35 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Finkel, A., Schnoebelen, P.: Well-structured transitions systems everywhere! TCS 256(1-2), 63–92 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lazić, R. (2006). Safely Freezing LTL. In: Arun-Kumar, S., Garg, N. (eds) FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2006. Lecture Notes in Computer Science, vol 4337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11944836_35

Download citation

  • DOI: https://doi.org/10.1007/11944836_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49994-7

  • Online ISBN: 978-3-540-49995-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics