Algorithmic Ramifications of Prefetching in
Memory Hierarchy

Akshat Verma and Sandeep Sen

! akshatverma@in.ibm.com, IBM India Research Lab
2 ssen@cse.iitd.ernet.in, Dept of Computer Science and Engineering, IIT Delhi*

Abstract. External Memory models, most notable being the I-O Model
[3], capture the effects of memory hierarchy and aid in algorithm design.
More than a decade of architectural advancements have led to new fea-
tures not captured in the I-O model - most notably the prefetching ca-
pability. We propose a relatively simple Prefetch model that incorporates
data prefetching in the traditional I-O models and show how to design
algorithms that can attain close to peak memory bandwidth. Unlike (the
inverse of) memory latency, the memory bandwidth is much closer to the
processing speed, thereby, intelligent use of prefetching can considerably
mitigate the I-O bottleneck. For some fundamental problems, our algo-
rithms attain running times approaching that of the idealized Random
Access Machines under reasonable assumptions. Our work also explains
the significantly superior performance of the I-O efficient algorithms in
systems that support prefetching compared to ones that do not.

1 Introduction

Algorithm analysis and design are based on models of computation that must
achieve a balance between abstraction and fidelity. The incorporation of memory
hierarchy issues in the traditional Random Access Machine (RAM) model took
some time [1,2,4,3,14, 11], eventually culminating in the I-O model of Aggar-
wal and Vitter[3]. The I-O model derives wide acceptance from its simplicity. It
manages to redress the lack of distinction among the memory access times of
the different tiers of memory in the RAM model and has been used extensively
in the design of various external memory algorithms [3,18,9]. Further work in
this direction led to the Cache model of Sen, Chatterjee and Dumeer [20] that
addresses the algorithm design issues under the constraints of limited associa-
tivity in memory hierarchy. These results show an inherent gap in complexities
of several problems between the RAM and the I-O models.

1.1 Motivation

The I-O models report their results in terms of the number of I-Os thus making
an implicit assumption that every I-O has same cost. Dementiev and Sanders [9]
present an efficient sorting algorithm in terms of the I-O time thus moving to to a
more practical metric. However, all these models assume that the cost of I-O (in
terms of time) is a fixed constant. A close look at memory access reveals that I-O
cost can be broken into latency (time spent in seeking to the right location) and

* Part of the research done when the author was visiting University of Connecticut
and supported by NSF Grant ITR-0326155

the transfer time (time spent in actual transfer of the block). Hence, a latency L is
incurred before the start of the transfer of a block. A large number of techniques
(like increase in bus bandwidth, advances in semiconductor technology) have led
us to a stage where primary memory bandwidth is approaching processor speed.
Similarly, the disk transfer times have significantly improved over the years where
packing density and disk rotation speeds have greatly increased. Techniques
like using parallel disks have also been useful to ensure that I-O bandwidth
approaches processor speed [23,9, 6]. Unfortunately the access latencies for both
primary and secondary memory have not reduced in tandem with increase in
memory bandwidth and processor speed, and I-O bottleneck is dominated by it.

The traditional approach for speeding up memory access has been to minimize
the number of I-O’s to reduce the total latency and its parallelization on multiple
disk architectures. Pipelining and Prefetching support in contemporary architec-
tures (including Pentium IV) [7,10] present another possibility, namely, overlap-
ping access latencies (For a survey on system-level prefetching support, refer to
[19] and references therein). Similarly, read-ahead caches on disks prefetch data
in advance to hide the latency component. Also, disk scheduling algorithms like
SCAN hide latency of queued requests while serving a block. Because of the huge
difference in magnitude between latency and transfer times, the potential sav-
ings in I-O times are immense. As an example, consider a scenario where we read
1,000,000 10KB blocks sequentially where each read has a latency of 10 ms and
transfer time of 0.1 ms per block. In the traditional I-O model we would incur
a latency for each read and the total I-O time would be approximately 3 hours,
whereas, with prefetching the total time is less than 2 minutes as we incur the
latency only for the first block. On current systems with system-level prefetching
[19], such sequential reads take significantly less time than predicted by the I-O
model (Section 5). Moreover, many recently proposed disk scheduling algorithms
strive to compensate for the lack of prefetching-awareness in algorithms by idle
waiting at a head position or waiting to build large batches of requests before
sending them to the disk controller [15,17]. In [15], the controller waits for more
contiguous requests to be issued after serving a request, thus introducing idling.
If such requests are issued before time using prefetching, such idling is elimi-
nated thus increasing disk efficiency directly. Hence, incorporating prefetching
in the I-O model not only ensures that the I-O times predicted by the model are
meaningful but may also improve disk efficiency.

Moreover, algorithms designed for single cost I-O models [3,12,5] may not
translate to optimal algorithms in a 2-cost prefetch model. Note that algorithms
in the I-O model do not specify the relative order in which blocks are fetched.
Hence, such algorithms need to find an ordering of I-Os that is prefetch efficient
(formally defined in Section 4). More importantly, computing a prefetch-efficient
order of blocks ahead of time for certain problems (e.g. sorting) necessitates
devising new techniques. Our experimental studies in Section 5 confirm that
algorithms optimal in traditional I-O models but not prefetch aware may perform
very poorly as compared to prefetch-aware algorithms.

1.2 Relationship with other Models
In order to take advantage of prefetching, we work with a two-level memory
model where the I-O cost is in terms of two parameters - L is the time to access
the memory location and Bjs is the transfer time for a memory block of size
B. The request for accessing a block from the slower memory can be sent out
prior to its actual use and moreover several such requests can be pipelined. This
model has some similarities to [2] where L = f(z;) is a (monotonic) function
of the last address zy in a block transfer and additional cost 1 thereafter. The
authors had derived bounds for different families of the function f. By choosing
a step function L (left open by [2]), in conjunction with other parameters of the
I-O model our algorithms exploit features hitherto not analyzed. We would like
to note that some of the recent experimental studies of external sorting [9] make
extensive use of parallel threads which may invoke prefetching at a system level.
In another approach the authors [6] look at oblivious sorting algorithms on a
multi-disk machine where prefetching could turn out to be extremely relevant.
The design of cache-oblivious [12] algorithms has drawn a lot of attention and it
may be pertinent to mention that it does not automatically take care of the issue
addressed by us. The basic algorithm should be inherently recursive in nature and
must be aware of the size of the internal memory to pipeline memory access.
This is to avoid latency for every block of a (sufficiently large) sub-problem
that can fit inside the internal memory. It is an interesting question, if every
cache-oblivious algorithm can be converted into a prefetch-efficient algorithm by
adding an extra (cache-aware) pipelined memory transfer step. A related area of
study that has attracted a great deal of attention is the design of efficient system-
level prefetching techniques independent of the algorithm running on the system
[19,16]. These techniques identify regular data access patterns amongst the I-O
requests and prefetch data accordingly. However, if the algorithms running on
such systems are unaware of prefetching, the system-level prefetchers may not be
effectively used. Hence, we design algorithms that efficiently use such prefetching
support to reduce I-O times.

2 The Prefetch Model and some Preliminaries

Aggarwal and Vitter [3] proposed an I-O model for an input of size N that
reads blocks of size B, can transfer D blocks concurrently and works with a
fast memory of size M. We formalize an extension of the I-O models to capture
prefetching by introducing the following additional parameters -

— By as the time3 to transfer one block of memory, where By /B > 1.

— L as the normalized latency in transferring from slow memory to fast mem-
ory. We always use L to denote read latency unless otherwise stated. In cases
where we deal with both read and write latency, L, denotes read latency and
L,, denotes write latency.

— There is an explicit prefetch instruction and the Prefetch Latency is L.

A large block-size does not reduce the Prefetch Model to I-O model as the

algorithms for By; = L may not be optimal. To simplify our presentation, we

3 All the timing parameters are normalized wrt to the instruction cycle

initially ignore the parameter D from the prefetch model and propose optimal
algorithms in a single disk prefetch model. In this paper we make the following
assumptions that are consistent with the existing architectures. (i) N > M > B
(ii) (M/B)By > L * (iii) N, M, B are of the form 2% to simplify analysis -
the asymptotic bounds are not affected. The fast memory size (be it cache or
registers) M is typically much larger than the size of the cache line B. Moreover,
the latency incurred, L, is typically much smaller than the time to load the
internal memory completely (= %BM). Prefetch latency is typically same as
the memory latency L or may differ from it by one or two cycles.

Definition 1 The latency l; of block i is defined as the additional latency that
is incurred because of block i. Hence, if reads for block (i — 1, i) are given
at (ti—1, t;) and the blocks are available at times (e;—1, e;), then l; = e; —
max{t;, e;_1}, where e;’s are ordered.

Note that for blocking reads, this definition of latency is the same as [; = e; — t;,
which is the one commonly used. We modify the usual definition in order to
define cumulative latency of a m — block L., simply as sum of the latency of the
m blocks, where an m — block denotes a set of m consecutive blocks.

We make a note here that complete control over prefetch is not realistic and,
in practice, prefetching is constrained by the number of prefetch buffers, limita-
tions due to associativity (in a Cache Model) and a streaming behavior in data
access required for most forms of prefetching. Our results can be extended in a
model that includes (a) limited prefetch buffers (b) small associativity (c) lim-
ited streams support for prefetching and (d) parallel disks, for which the reader
is referred to [21].

Running time
We analyze the algorithms in terms of the total time that includes computation
time and the I-O time. This is normalized with respect to the instruction cycle
that takes unit time. The only I-Os (reads/writes) that we consider are I-Os to
slow memory. Access to fast memory is counted along with the number of I-O
operations. Since memory bandwidth is now within a small constant factor (2 to
4) of the processor speed, the running times that we derive have a multiplicative
factor of Bys/B, which is O(1) when Bjy; = ¢B for some constant c.

2.1 Lower Bounds in the Prefetch Model

In the prefetch model, a block that has not been prefetched takes time By + L,
whereas a block that has been prefetched takes Bj; time. It is easy to see that if
k is the minimum number of I-Os needed to solve a problem A, then kBj; + L is
the lower bound on total time in the prefetch model. The bound is obtained by
assuming that there exists a prefetch algorithm that prefetches all but the first
block. Similarly, if there exists an algorithm that uses k I-Os, then k(L + Bjy)
is the upper bound on the I-O time by multiplying the number of I-O’s by the
time to transfer each block without prefetching. This upper bound is same as
the lower bound on I-O time in the traditional I-O models and differs from the
lower bound of the prefetch model by a factor of L/Bjys (a factor of 1000s for

4 Many of the technical results revolve around this assumption - c.f. Section 4.

typical disks). This general lower bound and (M/B)Bjs > L combined with the
bound on the number of I-Os for individual problems [3] yields the following
bounds in our prefetch model. For D disks, the bounds are divided by D.

Theorem 1. The worst case I-O time required to sort N records and to compute

any N-input FF'T digraph or an N-input permutation network is Q(% %

Theorem 2. The worst case I-O time required to permute N records is

. Nlog(1+N/B) B
Q(mln{NBM, W ?M})
Theorem 3. The worst case I-O time required to transpose a matriz with p rows
and q columns, stored in row major order under the assumption that M > B? |
is Q(NE®).

3 Prefetch Model and PDM Algorithms

We now investigate similarities between algorithms in a Parallel Disk Model
(PDM) and algorithms in the proposed Prefetch Model. We observe that both
class of algorithms exploit essentially the same features in memory access. One
may note that if a prefetch model algorithm can perform M/B I-Os in a pipelined
fashion and hide the latency of all but the first of these M /B blocks, it would be
efficient, i.e., it would take O(Bjs) time to perform a block I-O (since L <
(M/B)Bys)). Similarly, a PDM algorithm with M = DB (D is number of
disks) needs to perform M /B I-Os concurrently and hence needs to predict the
next M /B blocks required. Moreover, in both of these models, if the algorithm
performs the minimal number of I-Os possible while maintaining the O(M/B)
pipelining or parallelism respectively, the algorithm is optimal in the respective
models. This general idea has also been proposed in [22] to design efficient se-
rial algorithms from parallel versions. We now present an emulation scheme to
generate Prefetch Model algorithms from PDM algorithms using this insight.

3.1 PDM Emulation

We restrict PDM algorithms to only those parallel disk algorithms that deal
with the case M = DB. The emulation works in the following manner. The
sequential algorithm with prefetching performs I-O in blocks of D. It emulates
the D disks as contiguous locations in D zones of the single disk. For every
parallel I-O p; performed by the PDM algorithm, let S; be the set of D I-Os
that the PDM algorithm performs concurrently. The emulation algorithm starts
the prefetch of all these | S;| blocks together. When all the |S;| blocks are available
in the fast memory, the emulation algorithm starts prefetch of the blocks in S;11
corresponding to the next parallel I-O p;;1. We show the following result (all
proofs are omitted for lack of space and the reader is referred to [21]).
Theorem 4. If the PDM algorithm performs k parallel I-Os, the corresponding
sequential prefetching algorithm takes an I-O time of O(kDB)y).

A similar emulation scheme is obtained for parallel disk prefetch algorithms
with the number of parallel disks D’ < D. In a parallel disk prefetch model, we
make the additional assumption that the fast memory available per disk is large
enough to hide the latency for that disk, i.e., %BM > L. Each of the D’ disks
now emulate D/D’ disks and we have the following result.

Theorem 5. If the PDM algorithm performs k parallel I-Os, the corresponding
parallel prefetching algorithm with D' disks takes an I-O time of O(kD/D’'Byy).

The above emulation scheme allows us to convert existing optimal PDM algo-
rithms to algorithm optimal in our prefetch (sequential or parallel disk) model.
It is easy to see that if a PDM algorithm is optimal in the number of parallel as
well as block I-Os (i.e., it performs the minimal number of parallel I-Os as well
as the total number of block I-Os across all the disks is minimum), the corre-
sponding emulated prefetch algorithm is optimal in the prefetch model. Since the
lower bound for most common problems in a PDM model is a factor D’ (number
of disks used) less than the lower bound in a sequential I-O model, an optimal
PDM algorithm is also typically optimal in the traditional single disk I-O model.
Hence, in most likelihood, such optimal PDM algorithms can be directly used
to generate an optimal prefetch algorithm.

A drawback of the emulation strategy described here is that it is not easy to
design theoretically optimal PDM algorithms (for D = 2(M/B)). Further, direct
design often leads to simpler algorithms and also allows overlapping computation
with memory access (which could save up to a factor of two).

4 Designing Optimal Algorithms Directly

The different techniques (from prediction sequence balancing to sequence preser-
vation) employed for direct design of algorithms have a common underlying
strategy: perform minimal number of I-Os in a prefetch-efficient manner, i.e.,
hide latency for all blocks other than the first.

Definition 2 An algorithm that performs k I-Os is prefetch efficient if it takes
I-O time O(L + kByr).

We make a note here that the assumption L < (M/B)B)y dictates the techniques
that we use in designing algorithms. Observe that if L = [Bjs, then a prefetch-
efficient algorithm needs to prefetch [blocks in advance. OQur assumption of a
large | (= M/B) covers real systems but requires our algorithms to be intelligent
enough to predict the next M/B blocks and start prefetching for them. On the
other hand, consider the extreme (though unrealistic) case of | = O(1), where
an optimal algorithm does not need to prefetch any blocks and any existing I-O
optimal algorithms are optimal in this model.

We have essentially devised three techniques for designing optimal algorithms.
We prove a general result for a class of algorithms called sequence-preserving
algorithms and use it to design optimal algorithms for all straight-line algorithms
considered (e.g., matrix transpose, permutation and FFT). We have devised a
technique for dynamic re-balancing of prefetched data for algorithms that merge
constant number of sequences (2-way sorts) and prediction sequence balancing
for algorithms that merge large number of sequences (M /B-way sorts). We first
present results for sequence-preserving algorithms and show its applications.

4.1 Sequence Preserving Algorithms

We define a class of straight-line algorithms that we call sequence-preserving al-
gorithms and prove that in this class of algorithms, prefetching can hide latency.
We will show later that many straight-line algorithms fall in this class. We begin
with a technical lemma and some definitions.

Lemma 1. For any set of k pre-determined block reads, the total time needed

Definition 3 An instruction I; precedes I; in an algorithm A (i.e. I; < I;), iff
1; is executed before I; in A.

We define I%+* and I"™* as the ordered sets consisting of all the instructions that
write and read respectively from memory location s;, where the order is based
on their usage time in A.

Definition 4 The neighbourhood set Np is defined as a set containing all the
tuples of the form {I1, Iz} such that Iy, Iy € {I"PUI™ I3 UT™} for some i, j
and Al3: 13 € (Iw’i Ul UIw’j) and I < I3 < Iy or I < I3 < I7.

The neighbourhood set of an algorithm A consists of tuples {1, Iz} of instruc-
tions such that Iy and Iy access (read or write) memory locations s; and s;
at times 77 and Tb respectively. Also, none of the instructions in A executed
between T and 75 access either of the two memory locations. We also define
for all instructions of the form I,, € I+, *I,,, as the last instruction in I™ s.t.
Im < I, and I, as the first instruction in I"™7 s.t. I,,, < I%,.

Definition 5 A straight-line algorithm A is sequence preserving iff for all I
and I, st.(i) {*I2, 1} € Ny or {*I1,* 11} € Ny and (i) *I2 < Iy;

then (a)lzexists, (b){Ii,I2} € Ni (¢) L <y & I <I3.

Essentially, a sequence preserving algorithm reads data in the same order as it
had last written them, if it had written them earlier. Moreover, before reading
any data that had been written earlier, all the reads before that write should
also be written back. For the cases where any of the {I3, I3} or {I1, I2} are not
defined, the corresponding precedence relation is assumed to hold by default.
Using a constructive proof ([21]) of the following lemma, we convert existing I-O
optimal sequence-preserving algorithms to prefetch-efficient algorithms.
Lemma 2. For any I-O optimal sequence-preserving straight-line algorithm A,
there exists a sequence-preserving algorithm A’ such that if a write of block s;
of slow memory is made at time t, the read to block s; of slow memory is made
after at least M /B block I-Os. Also, A’ performs no more I-Os than A and hence
is also I-O optimal.

One may also note that an I-O optimal algorithm in general may not be the
optimal algorithm for that problem. However, we show that the I-O optimal
algorithm for the problems considered does not take computation time more
than the I-O time and hence, it is also optimal. We now state the key result for
straight-line algorithms.

Theorem 6. Any sequence-preserving straight-line algorithm that uses k I-Os
has an equivalent algorithm that takes I-O time O(L + kBjy).

Corollary 1. A sequence of k pre-determined reads, k > M/B, takes time
O(kByr).

Corollary 2. A sequence of k pre-determined reads and writes, k > M/B, such
that no writes follow reads, i.e., there does not exist a pair Iy, Iy € {1, I™}
s.t.Iy < Iy for some i, takes time O(kByy).

We have now characterized a class of algorithms such that prefetching is able
to hide the latency in reading the blocks. We now specify a writing order for
various I-O optimal algorithms and use Theorem 6 to devise algorithms optimal
in the prefetch model.

Matrix Transpose Algorithm: We show that the following transposition-by-
blocks algorithm is sequence-preserving. The algorithm transposes sub-matrices
with B rows and B columns. It transposes the B rows by taking M/B rows
at a time and computing the partial transposes. While writing them back, the
algorithm ensures that it writes them in the order they need to be read. It
then iterates till the transposition is complete. After computing all the block
transposes, it rearranges the blocks in the required order taking linear time. Our
writing order immediately ensures that our algorithm is sequence-preserving. If
M/B > B, then the algorithm needs only one pass of the data to compute the
block transposes. This leads to the following corollary of Theorem 6.
Corollary 3. The total time to transpose a matrix with p rows and q columns,
stored in row major order, is @(B?MN)

Note that even in the case that M < B2, the above algorithm is sequence
preserving. Moreover, the number of I-Os required in that case matches the lower
bound of Aggarwal and Vitter for the general case [3] . Hence, the algorithm runs
in time equal to the lower bound for the problem.

General Permuting Algorithm: Note that permuting is a special case of
sorting. The algorithm for permuting is thus based on the M/B-way merge-sort
algorithm of [3]. The algorithm has two phases. In the first phase, we permute
the elements within runs of size M. Later, we merge the permuted runs taking
them M/B at a time. The difference from merge sort though is that the the
next set of blocks needed is known a priori in this case. We have the following
theorem for permuting.

Theorem 7. The total time required to permute N records is ©(min{N By,

Nlog(1+N/B) ﬂ})
log(1+M/B) B

We have also shown that the algorithm of Cormen et al. [8] for bit-matrix-
multiply /complement (BMMC) permutation is sequence preserving and hence
optimal in I-O time. Similarly, the inner loop of the algorithm for FFT and
Permutation network in [3] is sequence-preserving and hence optimal.

4.2 Dynamic Rebalancing: Merge Sort

We illustrate the technique of dynamic rebalancing of prefetched data (balancing
the amount of data being prefetched across all runs) using 2-way merge sort and
show that it matches the I-O time to the Compute Time, i.e., O(N log N).
Merge Sort Algorithm: The merge sort algorithm is identical to the standard
2-way merge sort. OQur prefetching strategy is the one that achieves the bounds
needed. We describe our prefetching algorithm for the merging procedure of
merge-sort first. We define A; and A, with sizes n; and no as the two sorted
arrays that are to be merged. Without loss of generality, we assume that n, = no.
Case (i) n1 > M/2: The prefetch algorithm prefetches M/(2B) blocks of both
the arrays and labels them from 1 to M/(2B). It then prefetches the next block
from Ap, if the last element of block 1 of A; is smaller than the last element

of block 1 of As. Otherwise, it prefetches the next block of As. If it prefetches
from Aj, then it decrements the label on each block of A; by 1. Otherwise, it
does the same for As. The prefetching evaluation is performed every Bjs cycles
and either of A1 or As is prefetched depending on the evaluation. If at any time
there are no blocks of A; left to be prefetched, the next block to be prefetched is
from As and vice versa. If both A; and Ay have no blocks left to be prefetched,
case (ii) is followed.

Case (ii) ny < M/2: The prefetch algorithm prefetches (M/2B) blocks each
from both the arrays and labels them from 1 to M/2. It then prefetches the
next set of arrays as the blocks of A; or Ay are written out to slow memory,
i.e., at most once every Bj; cycles. Note that the data manipulation in merge-
sort is done only in the merging procedure. Hence, the reads are done just
prior to merging. The merge-sort is performed in this manner. We initially load
M/ B blocks of the array and merge-sort them. We do this for all the (N/M)
M/ B —blocks. Hence, after this step, we have (N/M) M /B —blocks that are all
sorted and have to be merged taken 2 at a time, with the size doubling in each
iteration of merge-sort. The prefetching algorithm for merging described earlier
is then used for the remaining iterations. We have the following optimality result
for merge sort.

Theorem 8. The total time required to sort N numbers using 2-way merge sort
in the prefetch model is O(% - Nlog N).

4.3 Randomized Merge Sort with Prediction Sequence Balancing

Although the two way mergesort has @(N log N) running time, it does performs
more passes than an I-O optimal algorithm. It is easy to verify that the standard
M/ B-way Merge Sort [3] is unable to hide the latency for most blocks because
an adversary may force it to prefetch blocks out of order of their use. Since it
has only constant memory available per run (as opposed to 2-way Merge Sort
that had M /2 memory available), it can hide latency only for a constant fraction
of blocks. The strategy of using a prediction sequence [9] used for parallel disks
works either for small N (N/B < M) or requires the complication of forming
large meta-blocks a priori, which additionally increases the constants. Similarly,
Columnsort algorithm [6] uses some novel techniques to ensure that data access
is deterministic but the algorithm is not defined for large V.

We also pursue the idea that if an algorithm A could predict the order in which
blocks are needed in any merge phase of the merge sort algorithm, A would be
prefetch efficient, i.e., A would take O(kB)s) time to perform k I-Os. We show
([21]) that an O(M) sized sliding window sample of the prediction sequence
is sufficient for predicting, with high probability, the order in which blocks are
needed, if (a) the prediction sequence is balanced across all the runs being merged
and (b) the input is randomized. Using the above result, the algorithm maintains
one prediction sequence block from each of the M/B runs being merged in
memory and uses it to prefetch blocks in advance. Hence, the technique is in
some sense, a refinement of balancing prefetched data, the difference being that
instead of balancing data over runs (as in Sec. 4.2), we now balance the in-
memory prediction sequence across runs. For further details of the optimal

M/ B-way merge sort (optimalSort) algorithm and proof of its optimality, please

refer to [21].
Theorem 9. optimalSort sorts N records in an I-O time of O(% %)

5 Experimental Results

We conducted a large number of experiments to study the relative performance
of algorithms optimal in traditional I-O models ([3]) but prefetch-unaware as
compared to algorithms that are prefetch-efficient. Matrix transpose and merge
sort were used as sample problems to demonstrate the importance of incorporat-
ing prefetching when designing the algorithms. Matrix transpose represents the
class of problems where the prefetch-optimal algorithm is derived from the opti-
mal algorithm in the I-O model by finding a prefetch-efficient ordering, whereas,
the standard M /B-way merge sort does not lead to any prefetch-efficient order-
ing and other algorithms (e.g. 2-way sort with dynamic rebalancing) need to be
devised in prefetch model. We use the disksim simulation environment to study
the performance of various algorithms [13]. Disksim has been used in a large
number of studies and approximates the behavior of a modern disk closely. We
chose the disk model of Seagate cheetah4LP disk that has been validated against
the real disk and matches its average response time to within 0.8%. Seagate
Cheetah L P supports sequential prefetching using readahead buffers. C-SC AN
was chosen as the scheduling algorithm, N was 640000, and B was 512 Bytes.

. 1900 [
Proposed ——

1895 -
1890 -

1885 -

1880 -

1-O Time
1-O Time

1875 -

1870 -

1865

1860 -

L L L L L L L L L 1855 Lt L L L L L L L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(a) (b)
Fig. 1. Performance of (a) Prefetch-efficient and (b) Random Matrix Transpose
with increasing M/B (Note that scales are different)

We performed three sets of experiments with the optimal I-O model matrix
transpose. In the first set, prefetching was disabled and the algorithm picked the
B x B sub-matrices in a random order. For the second set, the same algorithm
was run with prefetching enabled. In the third set, the algorithm had a prefetch-
efficient order (i.e. it was aware of the prefetching order and read the sub-matrices
to match this order). We found that the first two sets showed no statistical
difference with the second set performing marginally better in a few cases. Hence,
we report only the second and third set of experiments. One may note that the
random ordering of sub-matrices (Set 2), even though optimal in traditional
I-O models ([3]), is not implemented in practice. We use such an ordering to
demonstrate the inability of I-O models to differentiate between algorithms that

210000 —
M/B-way Sort -

2-way Rebalanced Sort —— T : -
o 2-way Sort (No Prefetching) -

200000
190000
180000
170000 |

160000 -

1-O Time
1-O Time
§

55}

150000

140000 -

130000 [

120000 |

110000 L L L L L L L L L L L
500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500

(a) (b)
Fig. 2. Performance of (a) 2-way and (b) M/B-way Mergesort with increasing
M/B

have very different I-O times on real systems. Note that the I-O model predicts
the running time of all the 3 sets as the running time of second set but it is
clear (Fig. 1) that prefetch-efficiency makes a huge difference in performance.
In fact, the performance improvement (ratio of Prefetch-Unaware disk I-O time
to prefetch-efficient disk I-O time) is fairly close to the maximum achievable
theoretically for this disk. The disk can prefetch up to 282 blocks ahead and
hence the performance improvement due to prefetching alone is bounded by
282. However, random block accesses not only leads to more disk accesses but
the cost of each disk access is also higher. We looked at the logs generated by
DISKSIM and noticed that average positioning time for random block accesses
is higher than that for prefetched access. Hence, we notice that the performance
improvement even exceeds the bound of 282 for large m. One may also note
that prefetch-unaware algorithms (Fig. 1 (b)) fails to improve the performance
with additional memory as they do not use it for prefetching whereas we use the
additional memory to hide the latency of more blocks.

To evaluate the impact of prefetching on sorting, we studied the M/B-way
mergesort that is optimal in the number of I-Os ([3]) but oblivious to prefetch-
ing. We compared it with the performance of our proposed 2-way mergesort
that dynamically rebalances data and the standard 2-way mergesort. Prefetch-
ing was enabled for all the three algorithms. As a control experiment, we ran
a prefetch-disabled 2-way mergesort (2-way sort with prefetching disabled). We
observed that both the prefetch-enabled 2-way mergesorts comprehensively out-
performs the M/B-way mergesort (Fig. 2). Note that the performance improve-
ment for sorting does not approach the bound of 282. This is because 2-way
mergesort performs more I-Os than the M/B-way mergesort. For the chosen
value of parameters, a 2-way mergesort performs about 10 times more I-Os than
M/ B-way mergesort (evident from I-O time of Prefetch-disabled 2-way merge-
sort (Fig. 2(b)) as well). Hence, even though a 2-way mergesort has to perform a
much larger number of I-Os, prefetching is not only able to compensate for it but
allows it to outperform the prefetch-unaware algorithm by a significant margin.
We also noticed that the average positioning time for the algorithms are almost
same. Hence, prefetching alone attributes for the performance improvement of
the 2-way sorting algorithm. We note that even the standard 2-way mergesort

approaches the behavior of the rebalanced sort we propose and comprehensively
outperforms the M /B-way mergesort. This is attributed to the fact that the sim-
ple 2-way mergesort naturally uses the sequential prefetching present in disks
due to readahead caches. This may be an explanation as to why the naturally
prefetch-efficient standard 2-way mergesort performs better than the more so-

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

h

R

1.

isticated prefetch-unaware M /B-way mergesort on many real systems.
eferences

A. Aggarwal, B. Alpern, A. Chandra, and M. Snir. A model for hierarchical mem-
ory. In Proceedings of ACM Symposium on Theory of Computing, 1987.

A. Aggarwal, A. Chandra, and M. Snir. Hierarchical memory with block transfer.
In Proceedings of IEEE Foundations of Computer Science, pages 204-216, 1987.
A. Aggarwal and J. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116-1127, 1988.

B. Alpern, L. Carter, E. Feig, and T. Selker. The uniform memory hierarchy model
of computation. Algorithmica, 12(2):72-109, 1994.

G. S. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In Proceedings
of STOC, pages 307-315, 2003.

G. Chaudhry and T. H. Cormen. Getting more for out-of-core columnsort. In
Proceedings of ALENEX, 2002.

T. Chen and J. Baer. Effective hardware-based data prefetching for high-
performance processors. IEEE Transactions on Computers, 44(5):609-623, 1995.
T.H. Cormen, T. Sundquist, and L.F. Wisniewski. Asymptotically tight bounds
for performing bmmc permutations on parallel disk systems. SIAM Journal on
Computing, 28(1):105-136, 1999.

. R. Dementiev and P. Sanders. Asynchronous parallel disk sorting. In Proceedings

of SPAA, 2003.

N. R. Adiga et al. An overview of the bluegene/l supercomputer. In Proceedings
of Supercomputing (SC), 2002.

R. Floyd. Permuting information in idealized two-level storage. In Complezity of
Computer Computations, pages 105—109. 1972.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Proceedings of FOCS, 1999.

B. Worthington G. Ganger and Y.Patt. The disksim simulation envirnoment (ver-
sion 2.0). In Awailable at http://www.ece.cmu.edu/ ganger/disksim/.

J-W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game. In
Proceedings of the 13th Symposium on the Theory of Computing, may 1981.

S. Iyer and P. Druschel. Anticipatory scheduling: A disk scheduling framework to
overcome deceptive idleness in synchronous i/o. In Proceedings of SOSP, 2001.
M. Kallahalla and P. J. Varman. Optimal read-once parallel disk scheduling. In
Proceedings of IOPADS, pages 68—77, 1999.

K. Lund and V. Goebel. Adaptive disk scheduling in a multimedia dbms. In
Proceedings of ACM Multimedia, 2003.

U. Meyer and N. Zeh. I-o efficient undirected shortest paths. In Proceedings of
ESA, pages 434—445, 2003.

K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history buffer.
In Proceedings of HPCA, pages 96-105, 2004.

S. Sen, S. Chatterjee, and N. Dumir. Towards a theory of cache-efficient algorithms.
In Journal of the ACM, 2002.

A. Verma and S. Sen. Model and algorithms for prefetching in memory hi-
erarchy. In Working Draft, Awvailable at hitp://www.research.ibm.com,/people
/a/akshat_verma/akshat_verma.wip.html/$FILE /prefetch_main.ps, 2005.

U. Vishkin. Can parallel algorithms enhance serial implementation? In Commu-
nications of the ACM, 1996.

J. Vitter and E. Shriver. Algorithms for parallel memory I: Two-level memories.
Algorithmica, 12(2):110-147, 1994.

