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Abstract. In this paper we present the architecture and implementation of a 

hardware NIC scheduler to guarantee QoS on servers for high speed LAN/SAN. 

Our proposal employs a programmable logic device based on an FPGA in order 

to store and update connection states, and to decide what data stream is to be 

sent next. The network architecture is connection-oriented and reliable, based 

on credit flow control. The architecture scales from 4 to 32 streams using a 

Xilinx Virtex 2000E. It supports links with speeds in the order of Gbps while, 

maintaining the delay and jitter constrains for the QoS streams. 

1 Introduction 

Nowadays, QoS requirements on high performance system/local area networks 

(SAN/LAN) make necessary the use of complex routers to offer QoS hardware 

support between all their components. The MultiMedia Router (MMR) architecture 

[1] is an example of this sort of routers, designed as an interconnection compact 

component to be used in cluster and LAN/SAN environments. However, this router 

requires a high number of virtual channels (VC) per port (128) and a complex 

scheduler associated with every link, which maintains and updates connection states, 

and selects packets to be sent. 

A way to reduce router complexity and to optimize its design, while meeting QoS 

constraints, consists in improving traffic scheduling in servers [10]. The main idea is 

to reduce the number of buffers and VCs, taking advantage of QoS traffic sorting 

carried out by servers. Thus, both scheduling of routers and servers could work to 

wire speeds. To do that, it is necessary to use a hardware implementation to accelerate 

the scheduling process. However, the complexity of stream selection and priority 

updating poses an important implementation problem for scheduling a large number 

of streams using Gigabit links.  

In order to achieve these goals we propose a NIC (Network Interface Controller) 

scheduler architecture for servers with QoS support. Previous efforts [11,13,9] have 

proposed priority queuing architectures for switches and NICs. Our architecture is 

inspired on link schedulers designed for the MMR router. A simplified form of this 
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router has been completely implemented on an FPGA, denoted as Simple MMR 

(SMMR) [4]. The SMMR has been conceived as a prototyping platform, adapting 

MMR design ideas to a more realistic chip area and clock rate constraints. 

Furthermore, SMMR allows design alternatives for the evaluation and optimization of 

the initial MMR architecture [6]. A first prototype based on this architecture is 

proposed for a hardware traffic generator to test the SMMR. 

Our NIC scheduler is inspired on a previous work [9], which formulates a 

hardware solution for DWCS scheduling [14], using an in chip network processor and 

an FPGA on a board. On the other hand, our NIC architecture is a structured design 

which allows posterior improvements and optimizations. Also, the network 

architecture used in our case study allows implementing more components of the NIC 

scheduler in an FPGA. Only few tasks are coordinated by the server host processor in 

our implementation. These tasks will be performed by an FPGA embedded network 

processor in a future version.  

The remainder of this paper is structured as follows. In the following section the 

network architecture is presented. In section 3 we review the architecture of the QoS 

hardware scheduled server. The hardware architecture and implementation of the NIC 

scheduler is described in section 4. In section 5 we report details on the experimental 

prototype and the performance evaluation. Finally, section 6 summarizes the results of 

this work and overview future lines of research. 

2 Network Architecture 

Our server NIC scheduler is designed for high performance SAN/LAN and server 

clusters. These environments produce heterogeneous traffic streams, best effort (BE) 

and QoS (constant bit rate, CBR, and variable bit rate, VBR), which have different 

bandwidth and latency requirements. We consider a network architecture in which 

data packets are partitioned into flits (flow control units) of 1024 bits. Every flit is 

composed by 64 phits, where a phit (16 bits) is the minimum information unit 

transferred through a network link. The transmission bitwidth used internally in the 

NIC scheduler will be 32 bits, which is the same bitwidth that the external memory 

words. 

The establishment of QoS connections is carried out using an adaptive seeking 

algorithm of minimum path based on backtracking and denoted as Exhaustive 

Profitable Back tracking (EBP) [8]. For this purpose, two control packets, connection 

and disconnection, are used. Flow control used in this sort of traffic is PCS (Pipelined 

Circuit Switching). Best effort traffic uses a connectionless-oriented scheme, and a 

Virtual Cut Through (VCT) switching control. A Credit-based flow control, as in 

Infiniband [12], is used to avoid channel saturation and data loss. This technique 

consumes link bandwidth, which can be reduced by increasing flit size, and requires 

much smaller buffers.  

Link communications are serial and data are synchronized in blocks of 1040 bits 

((64+1) phits or 1flit + 1phit) that we denote as “flit frame”. Thus, a flit frame is 

divided in two parts, one corresponding to data, network control or synchronization 

flits, and another in which a credit may be sent. 
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3 Scheduler Architecture 

A NIC scheduler for a server with QoS support must maximize link throughput, at the 

same time that guarantees real time requirements and avoids starvation of BE traffic. 

In the design of our NIC scheduler, we take into account the following strategies in 

order to achieve these goals: an admission control and bandwidth distribution to 

maximize the link throughput, an adaptive priority system to obtain QoS guarantees, 

and an inhibition mechanism on QoS streams, which avoids starvation of best effort 

traffic and controls link bandwidth usage.  

In order to parameterize bandwidth required by all sorts of traffic (VBR, CBR and 

BE), time space is divided in multiples of a flit frame that we denote as “flit round” or 

just “round”. The number K of flit frames per round determines the minimum 

bandwidth assigned to a traffic flow (1/K). In our experiments we set K=2048. 

Admission and bandwidth assignment policies vary in function of traffic 

characteristics. For CBR traffic, only the bandwidth used is needed, which cab be 

expressed as the maximum number of flits that can be sent in a round. As VBR traffic 

bandwidth can vary from one round to the next, a statistic model is used to obtain 

medium and peak bandwidths, and to determine an adequate bandwidth reservation. 

Finally, remaining bandwidth is assigned to best effort traffic.  

In this first scheduler model, VBR connexions are considered as CBR. Thus, to 

avoid packet loss and overtake delay requirements that will appear with statistics 

models, its peak bandwidth (PBR) is used to reserve bandwidth in scheduler. An 

adaptive priority system that guarantees QoS requirements is based either in delay or 

jitter. In this case, a priority algorithm based on bandwidth and delay has been 

selected, the SIABP (Simple-IABP) algorithm [2]. The algorithm has good behavior 

under high traffic loads and it is the core of the link scheduling algorithm in the MMR 

router [3]. The algorithm also increases the priority of packets proportionally to its 

waiting time in the buffer input queue. This design needs a regulating mechanism to 

control the correct use of bandwidth reserved for every stream, avoiding starvation of 

BE traffic. Therefore, for CBR traffic, the deadline to send a flit (T_Delay) is 

determined as a function of its transmitting pace (BWlink/BWi , where BWlink is the link 

bandwidth and BWi is the bandwidth reserved for the VCi) in a round and its 

accumulated delay. 

Taking into account the previous parameters, the order in which streams (Si) are 

served follows Algorithm 1. Among all QoS streams ready to be sent – those with 

remaining bandwidth in the current round (BWR > 0), buffer space in the receiver VC 

(credits), and satisfying its bandwidth constrains (T_Delay ≤ 0) – the highest priority 

stream is select to be sent. When there is more than one stream with the highest 

priority, any one of these streams is selected. The implementation of this algorithm is 

widely detailed in section 4. 

A QoS server needs a high speed I/O interface to connect the storage system with 

the NIC scheduler board, providing the required bandwidth for every stream. New 

standards as the PCX commuted interface could provide the necessary bandwidth for 

current link bandwidths. Figure 1 shows the system architecture proposed for our QoS 

hardware scheduled server.  
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The system architecture is organized in two levels. The first level is carried out by 

server host processor, which provides first stage of admission control, initiate 

connection setup, stream identification and scheduling of stream buffers. 

Algorithm 1. Scheduler stream selection  
  for all streams S

i
∈{CBR}, i=1,2,…,n /*In parallel 

  /*Builds the priority vector V 
     if {S

i
.T_Delay≤0 & S

i
.Credits>0 & S

i
.BW

R
>0} 

        V
i
= S

i
.priority; /*Si participates in scheduling 

     else 

        V
i
= 0; /*Si does not must send data 

     Endif 
  end for 

  /*Selects the highest priority stream in log2n steps 

  {V
H
}= {highest(V

k
)}, ∀V

k
∈V; /*V

k
 with the high priority 

  if {card({V
H
}) == 1} Out= H;/*There is only one V

H
 

  else Out= Any({H});/*Selects any one of the highest V
H
 

  endif 
 

The second level of this architecture is completely implemented on an FPGA, 

coordinating admission control with the host processor, managing stream scheduling, 

formatting and transmitting flits from stream buffers. So, the FPGA not only performs 

scheduling tasks, but also provides real time functions that were previously assigned 

to a network processor. 

 

Fig. 1. System architecture of a QoS hardware scheduled server. 
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This distribution of tasks is due to timing strong requirements. Management of 

scheduling needs acceleration due to the temporal bounds and the fact that the 

communication with the network interface demands strict synchronization. 

Alternatively, this could be implemented using an ASIC. However, to keep pace with 

the constantly changing algorithms, standards and protocols, it is preferable to use 

reconfigurable logic. 

4 Hardware Architecture and Implementation  

The hardware architecture and implementation of our NIC scheduler combine the 

use of an FPGA board, a network interface, and a system of disks. The components 

implemented in the FPGA perform several tasks: communication with the server host 

processor, stream scheduling, and data input/output (see Figure 2).  
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Fig. 2. Internal hardware and interfaces of an FPGA Server NIC scheduling prototype. 

Connection setup is carried out by the host processor, loading parameters such as 

stream type (CBR, VBR), reserved bandwidth, transmitting pace (T_Delay), and VCs 

involved on a stream. As data packets are transmitted, a bidirectional communication 

host-FPGA controls VC buffers, interchanging data and control information. A flit 

arrival through the network interface is immediately communicated to the host. The 
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host processor also indicates to the FPGA the end of a communication and updates its 

state. This is followed by the FPGA sending a disconnection flit. As it is described in 

section 2, communications are synchronized using a “flit frame”, composed by 64+1 

phits. 

The input module (PQT_IN) controls the input link, identifying received packets: 

control flits, synchronization flits, and flow control credits. When a control flit 

arrives, the PQT_IN resends this to the host. When a synchronization flit is received, 

PQT_IN does nothing. In the last cycle of a flit frame a credit can be received from 

the router connected to the server. Then, the PQT_IN module informs of the credit 

arrival to the host through the PCI interface and to the SCEDULER module as well, 

increasing the corresponding credit counter of this stream. 

The output module (PQT_OUT) builds the head of a flit and sends it, followed by 

data from the corresponding VC buffer. PQT_OUT obtains data directly addressing 

VCs stored on the SRAM memory of the FPGA board. For each flit that is sent, 

PQT_OUT informs the host processor to manage its associated VC buffer. 

The scheduling algorithm is divided in two steps. First, all the sub-schedulers work 

in parallel to generate a global priority vector to be sent, where every sub-scheduler 

contributes with its VC identification and current priority. Second, the high priority 

VC is selected from the priority vector by a MAX bitonic network module (see Figure 

3). 

 

Fig. 3. Scheduler architecture composed of a sub-scheduler for every QoS data stream and of a 

MAX bitonic network. 

This proposal employs an implementation of a local scheduler (sub-scheduler) for 

every VC, which is composed of two modules, working synchronously in parallel 

(Figure 4). The SIABP priority module [2, 6] stores the priority of a VC, which is 

directly related to its bandwidth reservation as the number of flits that can be sent per 

round. After a scheduling process, all the priorities are updated. If a VC is selected to 
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send its flit into the next flit frame, its priority is reset. Otherwise, its priority is 

increased as a function of its waiting time (for further details, see [1]). 

The candidate selection is performed by a bitonic network (MAX) that selects the 

high priority VC from the priority vector generated by the sub-schedulers. The MAX 

module takes log2 n cycles and has a building cost in LUTs area of O(n), where n is 

the maximum number of VCs per output link. It is possible to reduce the area of this 

module to either O( 2n ) or O(log2n), building a recirculating shuffle-exchange 

network as in [9]. Nevertheless, the resulting critical data path and complexity is then 

increased due to the presence of new multiplexers. This complexity is critical for the 

architecture of an FPGA, the building area is not significantly reduced, as the 

resulting delay clock is increased. 

 

Fig. 4. Sub-scheduler architecture composed of a control module (CONTROL MASK) and of a 

SIABP priority module. 

The CONTROL MASK module (see Figure 5) controls the remaining bandwidth 

of a stream, the bank of credits, and the transmitting pace using the parameter 

T_DELAY. Using this information, this module decides if a VC must appear in the 

priority vector. If a VC has its CBR RATE counter set to a value less than 1, its BW 

REMAINDER counter greater than 0, and its CREDIT BANK counter greater than 0, 

the signal ENABLE TO TRANSMIT is set. At the same time the module adds its 

current priority to the priority vector. The priority added is zero only when one of the 

previous conditions is not satisfied. 

The control module (CTRL) is the last step in the scheduling process. It 

synchronizes the scheduler and PQT_OUT modules, and actives signals to update 

internal registers and scheduler counters. Thus, the total router cycles required for 

scheduling are 10 + log2n, where the 5 cycles are devoted to local stream scheduling, 

log2n cycles are spent on stream selection and 5 cycles more are consumed updating 

stream priorities. 



8      J. M. Claver, M. Canseco, P. Agustí, G. León 

5 Evaluation 

This section presents the performance evaluation of our NIC scheduler architecture 

and its hardware implementation using a Celoxica RC1000 board [7]. This board has 

an FPGA Xilinx Virtex 2000E (38,400 LUTs and 640 Kb BRAM), 8 MB SRAM 

memory distributed in four independent banks, and two PCI Mezzanine (PCM) I/O 

cards. 
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Fig. 5. Control module architecture (CONTROL MASK). 

The components implemented into the FPGA carry out several tasks: 

communications with the host processor, scheduling of streams and data input/output. 

Communications between the FPGA and the host processor use DMA transferences 

between the host/PCI peer and the 32bit/33 MHz PLX controller of the RC1000 

board.  

In order to simplify the design process, the FPGA Virtex has been programmed 

using HandelC [5] and the Celoxica DK4 environment, and the ISE 6.1 Xilinx 

backend tools from Xilinx. This eases prototyping our design, and the updating 

process. HandelC is a behavioral C based hardware description system developed by 
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Celoxica that allows co-simulation. Parallelism of process and synchronization are 

taken from the CSP model, in particular, from the Occam language. HandelC uses 

standard data types with user defined bitwidths. Thus, HandelC provides an efficient 

use of hardware resources.  

5.1 Area and Delay Results 

For this evaluation we have scaled our design from 4 to 32 virtual channels. Thus, we 

can evaluate its behaviour and performances with a different number of streams. 

Figure 6 reports the area size and clock rate for 4, 8, 16, and 32 data streams. SRAM 

memory used for interface and VC buffers are not included in this table. As the 

number of streams handled by the NIC scheduler increase from 4 to 32, the number of 

LUTs utilized by the implementation grows linearly. 

 

Fig. 6. Area and clock rate characteristics for different QoS server configurations. 

The maximum clock rate for a 4 streams configuration is 52 MHz, which decrease 

down to 25 MHz for the configuration with 32 streams. A detailed time analysis 

shows that maximum clock rate is limited by the sub-scheduler module and not by the 

selection module MAX. However, the maximum clock rate decreases logarithmically, 

showing that our NIC scheduler implementation can meet packet-time requirements 

on Gigabit links. 

5.2 Traffic Analysis 

In order to highlight performance results of our QoS NIC scheduler, we have 

compared it with another scheduler without QoS characteristics, based on a Round-

Robin scheduling algorithm, and implemented in an FPGA too. We perform two 

experiments to illustrate bandwidth distribution among data streams. In experiment 1, 

four streams with equal bandwidth division ratios (1:1:1:1) were scheduled. In the 
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results the X-axis reports scheduled output time expressed in flit cycles (each flit 

cycle is equivalent to 65 router cycles), and the Y-axis reports the bandwidth as the 

number of flits scheduled per unit of time. We only report the first 100 flit cycles of 

simulation (65,000 router cycles). Figures 7 and 8 show the same bandwidth division 

for the two schedulers. The bandwidth of each stream settles after 70 time units and 

maintains the same value until the execution is terminated. So, bandwidth for every 

stream is guaranteed and output link throughput is 100%. 

 

 

Fig. 7. Bandwidth distribution results for 

four streams with equal ratios (1:1:1:1) 

using the QoS scheduler. 

 

 

Fig. 8. Bandwidth distribution results for 

four streams with equal ratios (1:1:1:1) 

using a Round-Robin scheduler without 

QoS.

A second experiment with bandwidth division ratios (4:2:1:1) was also recorded. 

Figures 9 and 10 report a different bandwidth distribution for the two schedulers. 

When the QoS scheduler is used, the bandwidth of each stream settles after 70 time 

units and maintains the same value until the execution is finished. So, bandwidth for 

every stream is guaranteed and output link throughput is 100%. 

 

 

Fig. 9. Bandwidth distribution results for 

four streams with ratios (4:2:1:1) using the 

QoS scheduler. 

 

 

Fig. 10. Bandwidth distribution results for 

four streams with ratios (4:2:1:1) using a 

Round-Robin scheduler without QoS.

However, as is reported in Figure 10, bandwidth for every stream is not guaranteed 

when the Round-Robin scheduler is used, and output link maximum throughput is 
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below 86%. Although bandwidth for streams with low requirements is guaranteed, 

bandwidth for the stream with high requirements is not. 

6 Conclusions 

In this paper we have presented the architecture and hardware implementation of a 

hardware NIC scheduler with QoS guarantees for servers on high speed LAN/SAN 

and high performance clusters. The proposed architecture is scalable because the 

occupation area grows linearly as the number of data streams is increased, and the 

NIC scheduler clock rate decreases logarithmically and tends to be stabilized around 

the 20 MHz. The QoS server behaviour guarantees bandwidth and delay 

requirements, attaining network link throughput close to 100%. NIC scheduler has 

been implemented in an FPGA and using a high level specification language like 

Handel-C.  

Currently, we work in the design of a QoS server that handles combined CBR and 

VBR traffic with better efficacy and takes higher profit of maximum link throughput. 

Finally, we also work on increasing the clock rate of the NIC scheduler to adapt it to 

multi-gigabit data links. 
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