Abstract
Statistical discrimination of states in the preictal EEG is attempted using a large number of measures from linear and nonlinear time series analysis. The measures are organized in two categories: correlation measures, such as autocorrelation and mutual information at specific lags and new measures derived from oscillations of the EEG time series, such as mean oscillation peak and mean oscillation period. All measures are computed on successive segments of multichannel EEG windows selected from early, intermediate and late preictal states from four epochs. Hypothesis tests applied for each channel and epoch showed good discrimination of the preictal states and allowed for the selection of optimal measures. These optimal measures, together with other standard measures (skewness, kurtosis, largest Lyapunov exponent) formed the feature set for feature-based clustering and the feature-subset selection procedure showed that the best preictal state classification was obtained with the same optimal features.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hirsch, E., Andermann, F., Chauvel, P., Engel, J., da Lopes Silva, F., Luders, H.: Generalized Seizures: from Clinical Phenomenology to Underlying Systems and Networks. Elsevier, Paris (2006)
Song, I.-H., Lee, S.-M., Kim, I.-Y., Lee, D.-S., Kim, S.I.: Mutifractal analysis of electroencephalogram time series in humans. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 921–926. Springer, Heidelberg (2005)
Paluš, M., Komárek, V., Procházka, T., Hrncír, Z., Šterbová, K.: Synchronization and information flow in EEGs of epileptic patients. IEEE Engineering in Medicine and Biology Magazine 20(5), 65–71 (2001)
Steuer, R., Ebeling, W., Bengner, T., Dehnicke, C., Hättig, H., Meencke, H.-J.: Entropy and complexity analysis of intracranially recorded EEG. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 14(2), 815–823 (2004)
Iasemidis, L.D., Shiau, D.-S., Pardalos, P.M., Chaovalitwongse, W., Narayanan, K., Prasad, A., Tsakalis, K., Carney, P.R., Sackellares, J.C.: Long-term prospective on-line real-time seizure prediction. Clinical Neurophysiology 116(3), 532–544 (2005)
Lai, Y.-C., Harrison, M.A.F., Frei, M.G., Osorio, I.: Controlled test for predictive power of Lyapunov exponents: Their inability to predict epileptic seizures. Chaos 14(3), 630–642 (2004)
Maiwald, T., Winterhalder, M., Aschenbrenner-Scheibe, R., Voss, H.U., Schulze-Bonhage, A., Timmer, J.: Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic. Physica D 194(3-4), 357–368 (2004)
Kugiumtzis, D., Larsson, P.G.: Linear and nonlinear analysis of EEG for the prediction of epileptic seizures. In: Lehnertz, K., Arnhold, J., Grassberger, P., Elger, C.E. (eds.) Chaos in Brain?, Proceedings of the 1999 Workshop, pp. 329–332. World Scientific, Singapore (2000)
Mormann, F., Kreuz, T., Andrzejak, R.G., David, P., Lehnertz, K., Elger, C.E.: Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Research 53(3), 173–185 (2003)
Schelter, B., Winterhalder, M., Maiwald, T., Brandt, A., Schad, A., Schulze-Bonhage, A., Timmer, J.: Testing statistical significance of multivariate time series analysis techniques for epileptic seizure prediction. Chaos 16(1), 013108 (2006)
Chillemi, S., Balocchi, R., Di Garbo, A., D’Attellis, C.E., Gigola, S., Kochen, S., Silva, W.: Discriminating preictal from interictal states by using coherence measures. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology, vol. 3, pp. 2319–2322 (2003)
Jouny, C.C., Franaszczuk, P.J., Bergey, G.K.: Signal complexity and synchrony of epileptic seizures: Is there an identifiable preictal period? Clinical Neurophysiology 116(3), 552–558 (2005)
Dikanev, T., Smirnov, D., Wennberg, R., Velazquez, J.L.P., Bezruchko, B.: EEG nonstationarity during intracranially recorded seizures: Statistical and dynamical analysis. Clinical Neurophysiology 116(8), 1796–1807 (2005)
Stam, C.J.: Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clinical Neurophysiology 116, 2266–2301 (2005)
Velazquez, J.L.P.: Brain, behaviour and mathematics: Are we using the right approaches? Physica D 212(3-4), 161–182 (2005)
Mormann, F., Kreuz, T., Rieke, R.G., Andrzejak, C., Kraskov, A., David, P., Elger, C.E., Lehnertz, K.: On the predictability of epileptic seizures. Clinical Neurophysiology 116(3), 569–587 (2005)
Chavez, M., Besserve, M., Adam, C., Martinerie, J.: Towards a proper estimation of phase synchronization from time series. Journal of Neuroscience Methods 154(1-2), 149–160 (2006)
Darbellay, G.A.: An estimator of the mutual information based on a criterion for conditional independence. Computational Statistics and Data Analysis 32(1), 1–17 (1999)
Kugiumtzis, D.A., Kehagias, E.C.A., Neuhaüser, H.: Statistical analysis of the extreme values of stress time series from the Portevin Le Châtelier effect. Physical Review E 70(3), 036110 (2004)
Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification 2, 193–218 (1985)
Aha, D.W., Bankert, R.L.: A comparative evaluation of sequential feature selection algorithms. In: Fisher, D., Lenz, H. (eds.) Proceedings of the Fifth International Workshop on Artificial Intelligence and Statistics, pp. 1–7 (1995)
Tsimpiris, A., Kugiumtzis, D.: Clustering of oscillating dynamical systems from time series data bases. In: Electronic Proceedings of the International Workshop on Knowledge Extraction and Modeling, Capri, Italy (2006)
Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: The TISEAN package. Chaos 9, 413 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kugiumtzis, D., Papana, A., Tsimpiris, A., Vlachos, I., Larsson, P.G. (2006). Time Series Feature Evaluation in Discriminating Preictal EEG States. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds) Biological and Medical Data Analysis. ISBMDA 2006. Lecture Notes in Computer Science(), vol 4345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11946465_27
Download citation
DOI: https://doi.org/10.1007/11946465_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68063-5
Online ISBN: 978-3-540-68065-9
eBook Packages: Computer ScienceComputer Science (R0)