Skip to main content

Integration Analysis of Diverse Genomic Data Using Multi-clustering Results

  • Conference paper
Biological and Medical Data Analysis (ISBMDA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4345))

Included in the following conference series:

  • 982 Accesses

Abstract

In modern data mining applications, clustering algorithms are among the most important approaches, because these algorithms group elements in a dataset according to their similarities, and they do not require any class label information. In recent years, various methods for ensemble selection and clustering result combinations have been designed to optimize clustering results. Moreover, conducting data analysis using multiple sources, given the complexity of data objects, is a much more powerful method than evaluating each source separately. Therefore, a new paradigm is required that combines the genome-wide experimental results of multi-source datasets. However, multi-source data analysis is more difficult than single source data analysis. In this paper, we propose a new clustering ensemble approach for multi-source bio-data on complex objects. In addition, we present encouraging clustering results in a real bio-dataset examined using our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alexander, P.T., Behrouz, M.-B., Anil, K.J., William, F.P.: Adaptive clustering ensembles. In: Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 272–275 (2004)

    Google Scholar 

  2. Alexander, S., Joydeep, G.: Cluster ensembles-A knowledge reuse framework for combining partitionings. Journal of Machine Learning 3, 583–617 (2002)

    Google Scholar 

  3. Ana, L.N.F., Anil, K.J.: Combining multiple clusterings using evidence accumulation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 835–850 (2005)

    Article  Google Scholar 

  4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley, Chichester (2001)

    MATH  Google Scholar 

  5. Everitt, B.: Cluster analysis. John Wiley and Sons, Inc., Chichester (1993)

    Google Scholar 

  6. Greene, D., Tsymbal, A., Bolshakova, N., Cunningham, P.: Ensemble clustering in medical diagnostics. In: Proceedings of the 17th IEEE Symposium on Computer-Based Medical Systems, pp. 576–581 (2004)

    Google Scholar 

  7. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31 (1999)

    Google Scholar 

  8. Kaufman, L., Rosseeuw, P.J.: Finding groups in data: An introduction to cluster analysis. John Wiley and Sons, Inc., Chichester (1990)

    Google Scholar 

  9. Larray, T.H.Y., Fu-lai, C., Stephen, C.F.: Using emerging pattern based projected clustering and gene expression data for cancer detection. In: Proceedings of the Asia-Pacific Bioinformatics Conference, vol. 29, pp. 75–87 (2004)

    Google Scholar 

  10. Pavlidis, P., Weston, J., Cai, J., Grundy, W.N.: Learning gene functional classifications from multiple data types. Journal of Computational Biology 9, 401–411 (2002)

    Article  Google Scholar 

  11. Qiu, P., Wang, Z.J., Liu, K.J.: Ensemble dependence model for classification and prediction of cancer and normal gene expression data. Bioinformatics and Bioengineering, 251–258 (2004)

    Google Scholar 

  12. Theodoridis, S., Koutroumbas, K.: Pattern recognition. Academic Press, London (1999)

    Google Scholar 

  13. Xiaohua, H., Illhoi, Y.: Cluster ensemble and its applications in gene expression. In: Proceedings of the Asia-Pacific Bioinformatics Conference, vol. 29, pp. 297–302 (2004)

    Google Scholar 

  14. Zhou, Z.-H., Tang, W.: Clustering ensemble. Knowledge-Based Systems (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoon, HS., Lee, SH., Cho, SB., Kim, J.H. (2006). Integration Analysis of Diverse Genomic Data Using Multi-clustering Results. In: Maglaveras, N., Chouvarda, I., Koutkias, V., Brause, R. (eds) Biological and Medical Data Analysis. ISBMDA 2006. Lecture Notes in Computer Science(), vol 4345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11946465_4

Download citation

  • DOI: https://doi.org/10.1007/11946465_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68063-5

  • Online ISBN: 978-3-540-68065-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics